Math, asked by shivajiaherkar91, 1 month ago

Solve the following simultaneous equations using Cramer's rule : 4x + 3y = 5; 6x + 5y = 9.​

Answers

Answered by VεnusVεronίcα
10

Question:

Solve the following simultaneous equations using Cramer's rule :

  • 4x + 3y = 5
  • 6x + 5y = 9

\\

~~~~~~~~_____________

\\

Answer:

The value of 'x' and 'y' are 1 and 3 respectively.

 \\

~~~~~~~~_____________

 \:  \\

Step-by-step explaination:

The pair of equations given are :

  • 4x + 3y = 5
  • 6x + 5y = 9

 \:

Let's compare these equations to ax + by = c :

  • a = 4
  • a₂ = 6
  • b = 3
  • b = 5
  • c = 5
  • c = 9

 \:

Let's find D firstly :

\tt{:\implies~~ D=\left[\begin{array}{cc}a_1&b_1\\ a_2&b_2\end{array}\right]}

\tt{:\implies~~D= \left[\begin{array}{cc}4&3\\6&5\end{array}\right]}

\tt:\implies~~D= (4\times 5)-(6\times 3)

\tt:\implies~~ D=20-18

\tt:\implies~~ D=2

 \:

Now, finding Dx :

\tt{:\implies~~ D_x=\left[\begin{array}{cc}c_1&b_1\\c_2&b_2\end{array}\right]}

\tt{:\implies~~ D_x=\left[\begin{array}{cc}5&3\\9&5\end{array}\right]}

\tt:\implies~~ D_x=(5\times 5)-(9\times3)

\tt:\implies~~ D_x = 25-27

\tt:\implies~~ D_x=-2

   \:

Finally, finding Dy :

\tt{:\implies~~ D_y=\left[\begin{array}{cc}a_1&c_1\\a_2&c_2\end{array}\right]}

\tt{:\implies~~ D_y=\left[\begin{array}{cc}4&5\\6&9\end{array}\right]}

\tt:\implies~~ D_y=(4\times 9)-(6\times5)

\tt:\implies~~ D_y=36-30

\tt:\implies~~ D_y=6

 \:

From Cramer's rule, we get :

\tt:\implies~~ x=\dfrac{D_x}{D},~ y=\dfrac{D_y}{D}

\tt:\implies~~ x=\dfrac{-2}{2},~ y=\dfrac{6}{2}

\tt :\implies~~ (x=-1,~ y=3)

Similar questions