Math, asked by anandjff2006, 1 day ago

Solve the following simultaneous equations using Cramer’s rule.3x - y = 2 ; 2x - y = 3​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given system of linear equations is

\rm \: 3x - y = 2 \\

and

\rm \: 2x - y = 3 \\

Now, matrix form of the above equation is

\rm \: \bigg[ \begin{matrix}3& - 1 \\ 2& - 1 \end{matrix} \bigg] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}2\\3\end{array}\right] \\

where,

\rm \: A = \bigg[ \begin{matrix}3& - 1 \\ 2& - 1 \end{matrix} \bigg] \\

\rm \: X = \left[\begin{array}{c}x\\y\end{array}\right] \\

\rm \: B = \left[\begin{array}{c}2\\3\end{array}\right] \\

Now, Consider

\rm \:  |A|  \\

\rm \:  =  \: \begin{array}{|cc|}\sf 3 &\sf  - 1  \\ \sf 2 &\sf  - 1 \\\end{array} \\

\rm \:  =  \:  - 3 - ( - 2) \\

\rm \:  =  \:  - 3  + 2 \\

\rm \:  =  \:  - 1 \\

\rm\implies \: |A|  =  - 1 \:  \ne \: 0

It means, system of linear equation is consistent having unique solution.

Now, Consider

\rm \: D_1 \\

\rm \:  =  \: \begin{array}{|cc|}\sf 2 &\sf  - 1  \\ \sf 3 &\sf  - 1 \\\end{array} \\

\rm \:  =  \:  - 2 - ( - 3) \\

\rm \:  =  \:  - 2  + 3 \\

\rm \:  =  \: 1 \\

Now, Consider

\rm \: D_2 \\

\rm \:  =  \: \begin{array}{|cc|}\sf 3 &\sf 2  \\ \sf 2 &\sf3 \\\end{array} \\

\rm \:  =  \: 9 - 4 \\

\rm \:  =  \: 5 \\

Now,

\rm\implies \:\rm \: x = \dfrac{D_1}{ |A| }  = \dfrac{1}{ - 1}  =  - 1 \\

and

\rm\implies \:\rm \: y = \dfrac{D_2}{ |A| }  = \dfrac{5}{ - 1}  =  - 5 \\

Verification :-

Consider first equation

\rm \: 3x - y = 2 \\

On substituting the values of x and y, we get

\rm \: 3( - 1) - ( - 5) = 2 \\

\rm \:  - 3 + 5 = 2 \\

\rm \:  2 = 2 \\

Hence, Verified

So,

 \red{\begin{gathered}\begin{gathered}\bf\: \rm\implies \:Solution \: is \: \begin{cases} &\sf{x \:  =  \:  - 1 \: }  \\ \\ &\sf{y \:  =  \:  -  \: 5 \: } \end{cases}\end{gathered}\end{gathered}}

Similar questions