Math, asked by mahak5941, 11 months ago

Solve the following simultaneous lin.
1 (1) 2x - 3/4=3
5x-2y=7​

Answers

Answered by BrainlyGod
8

Answer:

x = 15/8 and y = 19/16

Step-by-step explanation:

According to the given question,

  • 2x-3/4 = 3 ----------1)

  • 5x - 2y = 7 --------2)

From 1st equation we get,

  • 2x - 3/4 = 3

  • 2x = 3/4 + 3

  • 2x = 15/4

  • x = 15/8

Now, putting the value of x in 2nd equation we get,

  • 5x-2y = 7

  • 5×15/8 - 2y = 7

  • 5×15/8 - 7 = 2y

  • 75/8 - 7 = 2y

  • 75-56/8 = 2y

  • 19/8 = 2y

  • 2y = 19/8

  • y = 19/16

Thus value of x = 15/8 and y = 19/16 respectively.

Answered by AbhijithPrakash
6

Answer:

2x-\dfrac{3}{4}=3,\:5x-2y=7\quad :\quad y=\dfrac{19}{16},\:x=\dfrac{15}{8}

Step-by-step explanation:

\begin{bmatrix}2x-\dfrac{3}{4}=3\\ 5x-2y=7\end{bmatrix}

\mathrm{Isolate}\:x\:\mathrm{for}\:2x-\dfrac{3}{4}=3

\mathrm{Add\:}\dfrac{3}{4}\mathrm{\:to\:both\:sides}

2x-\dfrac{3}{4}+\dfrac{3}{4}=3+\dfrac{3}{4}

\mathrm{Simplify}

2x=\dfrac{15}{4}

\mathrm{Divide\:both\:sides\:by\:}2

\dfrac{2x}{2}=\dfrac{\dfrac{15}{4}}{2}

\mathrm{Simplify}

x=\dfrac{15}{8}

\mathrm{Subsititute\:}x=\dfrac{15}{8}

\begin{bmatrix}5\cdot \dfrac{15}{8}-2y=7\end{bmatrix}

\mathrm{Isolate}\:y\:\mathrm{for}\:5\dfrac{15}{8}-2y=7

\mathrm{Subtract\:}5\dfrac{15}{8}\mathrm{\:from\:both\:sides}

5\cdot \dfrac{15}{8}-2y-5\cdot \dfrac{15}{8}=7-5\cdot \dfrac{15}{8}

\mathrm{Simplify}

-2y=-\dfrac{19}{8}

\mathrm{Divide\:both\:sides\:by\:}-2

\dfrac{-2y}{-2}=\dfrac{-\dfrac{19}{8}}{-2}

\mathrm{Simplify}

y=\dfrac{19}{16}

\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}

y=\dfrac{19}{16},\:x=\dfrac{15}{8}

Similar questions