Math, asked by Sharmaakshita, 6 months ago

Solve the following system if linear equation by cramer's rule 2x-y+3z=9 x+y+z=6 x-y+z=2​

Answers

Answered by Anonymous
2

Answer:.............................

:)

Step-by-step explanation:

Attachments:
Answered by bhuvna789456
7

Linear equation of the cramer's rule 2x-y+3z=9 , x+y+z=6 , x-y+z=2 is  x=1,y=2,z=3

Step by step solution:

Given:

2x-y+3z=9

x+y+z=6

x-y+z=2\\

To find:

x,y,z

Cramer Rule:

First we can find the \;\triangle value

\;\triangle=\begin{vmatrix}2&-1&3\\1&1&1\\1&-1&1\end{vmatrix}

\;\triangle=2(1+1)+1(1-1)+3(-1-1)

\;\triangle=2(2)+1(0)+3(-2)

\;\triangle=4-6

\;\triangle=-2

then find   , \Delta x,\Delta y,\Delta z

\;\triangle x=\begin{vmatrix}9&-1&3\\6&1&1\\2&-1&1\end{vmatrix}

\;\triangle x=9(1+1)+1(6-2)+3(-6-2)

\;\triangle x=9(2)+1(4)+3(-8)

\;\triangle x=18+4-24

\;\triangle x=-2

\;\triangle y=\begin{vmatrix}2&9&3\\1&6&1\\1&2&1\end{vmatrix}

\;\triangle y=2(6-2)-9(1-1)+3(2-6)

\;\triangle y=2(4)-9(0)+3(-4)

\;\triangle y=-4

\;\;\triangle z=\begin{vmatrix}2&-1&9\\1&1&6\\1&-1&2\end{vmatrix}

\;\;\triangle z=2(2+6)+1(2-6)+9(-1-1)

\;\;\triangle z=2(8)+1(-4)+9(-2)

\;\;\triangle z=-6

finally find the values of x. y, z,

\;\;x={\textstyle\frac{\triangle x}\triangle}

\;\;x={\textstyle\frac{-2}{-2}}

x=1

\;\;y={\textstyle\frac{\triangle y}\triangle}

\;\;y={\textstyle\frac{-4}{-2}}

y=2

\;\;\;z={\textstyle\frac{\triangle z}\triangle}

\;\;\;z={\textstyle\frac{-6}{-2}}

z=3

x=1 , y=2,z=3

Similar questions