Math, asked by beenaspt, 1 month ago

Solve the following system of equaions by substitution method: x+2y=5 and 2x+y=4.​

Answers

Answered by Blossomfairy
22

Given :

  • x + 2y = 5
  • 2x + y = 4

To Find :

  • The value of 'x' and 'y' by substitution method.

According to the question,

⇒ x + 2y = 5 - - - - - (i)

⇒ 2x + y = 4 - - - - - (ii)

From equation (i),

⇒ x = 5 - 2y

Putting the value of 'x' in equation (ii),

⇒ 2x + y = 4

⇒ 2(5 - 2y) + y = 4

⇒ 10 - 4y + y = 4

⇒ 10 - 3y = 4

⇒ - 3y = 4 - 10

⇒ - 3y = - 6

⇒ y = 2

Now,

⇒ x + 2y = 5

⇒ x + 2(2) = 5

⇒ x = 5 - 4

⇒ x = 1

  • So,the value of x is 1 and y is 2.

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

Answered by MяMαgıcıαη
143

\underline{\underline{\mathscr{Given\::-}}}

  • Eqⁿ (1) = x + 2y = 5

  • Eqⁿ (2) = 2x + y = 4

\underline{\underline{\mathscr{To\:Find\::-}}}

  • We have to solve these equations with substitution method.

\underline{\underline{\mathscr{Solution\::-}}}

From Eq (1), we get :-

\qquad\leadsto\quad{\bf{\pink{x = 5 - 2y}}}

Putting value of 'x' in Eq (2) :-

\qquad\leadsto\quad\sf 2(5 - 2y) + y = 4

\qquad\leadsto\quad\sf (2\:\times\:5) - (2\:\times\:2y) + y = 4

\qquad\leadsto\quad\sf 10 - 4y + y = 4

\qquad\leadsto\quad\sf 10 - 3y = 4

\qquad\leadsto\quad\sf  -3y = 4 - 10

\qquad\leadsto\quad\sf  -3y = -6

\qquad\leadsto\quad\sf  y = \dfrac{-6}{-3}

\qquad\leadsto\quad\sf  y = {\cancel{\dfrac{-6}{-3}}}\:(Cancelling)

\qquad\leadsto\quad{\bf{\purple{y = 2}}}

Now,

Putting value of 'y' in Eq (2) :-

\qquad\leadsto\quad\sf 2x + 2 = 4

\qquad\leadsto\quad\sf 2x = 4 - 2

\qquad\leadsto\quad\sf 2x = 2

\qquad\leadsto\quad\sf x = \dfrac{2}{2}

\qquad\leadsto\quad\sf x = {\cancel{\dfrac{2}{2}}}\:(Cancelling)

\qquad\leadsto\quad{\bf{\red{x = 1}}}

\therefore\:{\underline{\mathscr{Hence,\:value\:of\:x\:and\:y\:=\:\bf{1}\:\mathscr{and}\:\bf{2}}}}

More to know :-

  • Substitution method is used to solve linear equations. In this method value of one variable from one eqⁿ us substituted in the other equation.

━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions