Math, asked by dikshajain1104, 1 year ago

solve the following system of equations :1/2(2x+3y)+12/7(3x-2y)=1/2 7/2x+3y+4/3x -2y =2

Answers

Answered by prince94
18
if you want to check you can put the value of y and x
Attachments:
Answered by mindfulmaisel
10

The value of x and y is \bold{\frac{18}{7}\ {and}\ \frac{13}{7}}.  

Given:

\frac{1}{2(2 x+3 y)}+\frac{12}{7(3 x-2 y)}=\frac{1}{2} \text { and } \frac{7}{2 x+3 y}+\frac{4}{3 x-2 y}=2

Solution:

\frac{1}{2(2 x+3 y)}+\frac{12}{7(3 x-2 y)}=\frac{1}{2} \ldots \ldots \ldots \ldots \ldots(1)

\frac{7}{2 x+3 y}+\frac{4}{3 x-2 y}=2 \ldots \ldots \ldots \ldots \ldots(2)

For calculation purpose consider 2 x+3 y=p ; 3 x-2 y=q \ldots \ldots \ldots \ldots(3)

Put eqn (3) in eqn (1), we get

\frac{1}{2 p}+\frac{12}{7 q}=\frac{1}{2}

Take LCM

\frac{7 q+24 p}{14 p q}=\frac{1}{2} \Rightarrow 7 q+24 p=\frac{14 p q}{2}=7 p q

7 q+24 p=7 p q \ldots \ldots \ldots \ldots(4)

Also \frac{7}{p}+\frac{4}{q}=2

Take LCM

7 q+4 p=2 p q \ldots \ldots \ldots \ldots \ldots(5)

Subtracting (4) and (5), we get

20 \mathrm{p}=5 \mathrm{pq}

\Rightarrow q=4

Substitute q value in (4)

28+24 p=28 p

\Rightarrow 4 p=28

\Rightarrow p=7

From (3)  2x+3y = 7; 3x-2y = 4

Multiply the above equations with 3 and 2 respectively,

6 x+3 y=21 \ldots \ldots \ldots \ldots(6)

6 x-4 y=8 \dots \ldots \ldots \ldots(7)

Subtracting (6) and (7), we get

7 y=13

\bold{\Rightarrow y=\frac{13}{7}}

As 3x-2y = 4  

\Rightarrow 3 x-2\left(\frac{13}{7}\right)=4

3 x=4+\frac{26}{7}=\frac{54}{7}

\bold{\Rightarrow x=\frac{18}{7}}

Similar questions