Math, asked by abhinavpattipati, 7 months ago

Solve the following system of equations: 12/x+15/y= 7 6/x+ 20/y= 6; (x ≠ 0 and y ≠ 0)

Answers

Answered by tyrbylent
3

Answer:

(3, 5)

Step-by-step explanation:

\frac{12}{x} + \frac{15}{y} = 7  (xy ≠ 0)

\frac{6}{x} + \frac{20}{y} = 6 (xy ≠ 0)

Let  \frac{1}{x} = a and \frac{1}{y} = b , then

12a + 15b = 7 .... (1)

6a + 20b = 6 .... (2)

(2) × (- 2) + (1)

15b - 40b = 7 - 12

- 25b = - 5

b = \frac{1}{5} ⇒ y = 5

b → (1)

12a + 15*\frac{1}{5} = 7

12a + 3 = 7 ⇒ a = \frac{1}{3} ⇒ x = 3

(3, 5)

Similar questions