Math, asked by karnazmehar2006, 2 months ago

Solve the following system of equations. 217x +131y =913 ,131x + 217y = 827

Answers

Answered by vanshikahingorani04
0

Answer:-

Step by step explanation:-

217x+131y=913.....(equation 1)

131x+217y=827.....(equation 2)

add equation (1) and (2)

348x+348y=1,740

348 (x+y)=1,740

x+y= 1,740/348

x+y=5.....(equation 3)

subtract equation (2) from (1)

217x+131y=913

131x+217y=827

(-)__(-)____(-)________

86x-86y=86

86(x-y)=86

x-y = 86/86

x-y=1.....(equation 4)

add equation (3) and (4)

x+y=5

x-y=1

___________

2x=6

x=6/2

x=3

substituting the value of x in equation 3

x+y=5

3+y=5

y=5-3

y=2

result :- x=3,y=2 is the solution of given equation

Answered by BrainlyTwinklingstar
5

Answer

\sf \dashrightarrow 217x + 131y = 913 \: \: --- (i)

\sf \dashrightarrow 131x + 217y = 827 \: \: --- (ii)

By first equation,

\sf \dashrightarrow 217x + 131y = 913

\sf \dashrightarrow 217x = 913 - 131y

\sf \dashrightarrow x = \dfrac{913 - 131y}{217}

Now, let's find the value of y by second equation.

\sf \dashrightarrow 131x + 217y = 827

\sf \dashrightarrow 131 \bigg( \dfrac{913 - 131y}{217} \bigg) + 217y = 827

\sf \dashrightarrow \dfrac{119603 - 17161y}{217} + 217y = 827

\sf \dashrightarrow \dfrac{119603 - 17161y + 47089y}{217} = 827

\sf \dashrightarrow \dfrac{119603 + 29928y}{217} = 827

\sf \dashrightarrow 119603 + 29928y = 827 \times 217

\sf \dashrightarrow 119603 + 29928y = 179459

\sf \dashrightarrow 29928y = 179459 - 119603

\sf \dashrightarrow 29928y = 59856

\sf \dashrightarrow y = \dfrac{59856}{29928}

\sf \dashrightarrow y = 2

Now, let's find the value of x by first equation.

\sf \dashrightarrow 217x + 131y = 913

\sf \dashrightarrow 217x + 131(2) = 913

\sf \dashrightarrow 217x + 262 = 913

\sf \dashrightarrow 217x = 913 - 262

\sf \dashrightarrow 217x = 651

\sf \dashrightarrow x = \dfrac{651}{217}

\sf \dashrightarrow x = 3

Hence, the values of x and y are 3 and 2 respectively.

Similar questions