Math, asked by avneeshkhedkar, 5 months ago

solve the following system of equations
4x + 5y = 20xy
5x + 4y = 18xy (x not = 0 , y not = 0)​

Answers

Answered by madeducators2
0

Given:

The given system of equations are

4x + 5y = 20xy

5x + 4y = 18xy (x not = 0 , y not = 0)​

To find:

We have to solve the given equations i.e., find the values of x and y

Solution:

Consider  4x+5y=20xy as equation _ _(1)

                 5x+4y=18xy as equation _ _(2)

Now perform the operation 5(equation(1)) - 4(equation(2))

             5(4x+5y=20xy)

             -  [4(5x+4y=18xy)]

          =     25y-16y = 100xy-72xy

          =     9y=28xy

                 28x=9

                     x=\frac{9}{28}

Substitute   x=\frac{9}{28} in equation (1)

4(\frac{9}{28})+5y = 20(\frac{9}{28})y

y(5-\frac{45}{7})=\frac{9}{7}

y(\frac{35-45}{7})=\frac{9}{7}

y(\frac{-10}{7}) =\frac{9}{7}

-10y=9

y=\frac{-9}{10}

x=\frac{9}{28} and y=\frac{-9}{10}

Similar questions
Math, 2 months ago