solve the following system of equations by elimination method x+y=a-b
ax-by=a²+b²
Answers
ax + ay = a2 - ab
—————————
-by -ay = b2 + ab
-y ( b + a ) = b ( b + a)
-y = b
y = -b
Putting in eq 1
x -b = a -b
x = a
Answer:
The given system of equations may be written as
x+y−(a+b)=0
ax−by−(a2−b2 )=0
By cross-multiplication, we get
________x_______
−(a2 −b2 )−(−b)×−(a+b) =
________y______
−(a2 −b2 )−a×−(a+b)− =
⇒
_____x____
−a2 +b2 −ab−b2 =
______-y______-__1__
−a2 +b2 +a2 +ab = −b−a
⇒
__x___-__-y__
−a(a+b) = b(a+b)
⇒
____x_________-_______-y____-__1__
−a2 +b2 −ab−b2 = −a2 +b2 +a2 +a= −b−a
1
⇒
__x__-__-y_____-__1__
−a(a+b = b(a+b) = −(a+b)
⇒
__x__
−a(a+b)
=
__y____-__1__
−b(a+b) = −(a+b)
⇒x= −(a+b)−a(a+b)
=a and y= −(a+b)−b(a+b)
=b
Hence, the solution of the given system of equations is x=a,y=b.
=
__1__
−(a+b)
⇒
__x____-__y____-__1__
−a(a+b) = −b(a+b) = −(a+b)
⇒x= −(a+b)−a(a+b)
=a and y= −(a+b)−b(a+b)
=b
Hence, the solution of the given system of equations is x=a,y=b.
Step-by-step explanation:
Hence, the solution of the given system of equations is x=a,y=b.
have a nice day...
Try putting the values in equation 1