Math, asked by amitpudir3608, 4 months ago

Solve the following system of equations by matrix method.
3x - 2y + 3z = 8
2x + y - z= 1
4x – 3y + 2z = 4​

Answers

Answered by MaheswariS
6

\textbf{Given:}

\mathsf{3x-2y+3z=6}

\mathsf{2x+y-z=1}

\mathsf{4x-3y+2z=4}

\textbf{To find:}

\textsf{Solution of the given system by inverse matrix}

\textbf{Solution:}

\textsf{The given system of equations can be wrtitten as}

\mathsf{\left(\begin{array}{ccc}3&-2&3\\2&1&-1\\4&-3&2\end{array}\right)\left(\begin{array}{c}x\\y\\z\end{array}\right)=\left(\begin{array}{c}8\\1\\4\end{array}\right)}

\implies\mathsf{AX=B}

\implies\mathsf{X=A^{-1}B}

\mathsf{A=\left(\begin{array}{ccc}3&-2&3\\2&1&-1\\4&-3&2\end{array}\right)}

\mathsf{|A|=3(-1)-2(-8)+3(-10)}

\mathsf{|A|=-3+16-30=-17}

\mathsf{Cofactor\;matrix\;of\;A}

\mathsf{=\left(\begin{array}{ccc}2-3&-(4+4)&-6-4\\-(-4+9)&6-12&-(9+8)\\2-3&-(-3-6)&3+4\end{array}\right)}

\mathsf{=\left(\begin{array}{ccc}-1&-8&-10\\-5&-6&1\\-1&9&7\end{array}\right)}

\mathsf{adj\,A=(cofactor\;matrix)^T}

\implies\mathsf{adj\,A=\left(\begin{array}{ccc}-1&-5&-1\\-8&-6&9\\-10&1&7\end{array}\right)}

\mathsf{A^{-1}=\dfrac{1}{|A|}adjA}

\mathsf{A^{-1}=\dfrac{1}{-17}\left(\begin{array}{ccc}-1&-5&-1\\-8&-6&9\\-10&1&7\end{array}\right)}

\mathsf{Then,}

\mathsf{X=A^{-1}B}

\mathsf{X=\dfrac{1}{-17}\left(\begin{array}{ccc}-1&-5&-1\\-8&-6&9\\-10&1&7\end{array}\right)\left(\begin{array}{c}8\\1\\4\end{array}\right)}

\mathsf{X=\dfrac{1}{-17}\left(\begin{array}{c}-8-5-4\\-64-6+36\\-80+1+28\end{array}\right)}

\mathsf{X=\dfrac{1}{-17}\left(\begin{array}{c}-17\\-34\\-51\end{array}\right)}

\mathsf{X=\left(\begin{array}{c}1\\2\\3\end{array}\right)}

\textbf{Answer:}

\textsf{Solution is x=1, y=2, z=3}

\textbf{Find more:}

X + y + z = 6, 3x - y + 3z = 10, 5x + 5y - 4z = 3.

[Find A-¹ using adjoint method.]​

https://brainly.in/question/30325696

Similar questions