Math, asked by rishajbakshi279, 10 months ago

solve the following system of equations by substitution method
(1) 3x + 2y = 11 , 2x + 3y = 4
(2) 7x - 2y = 1 , 3x + 4y = 15​

Answers

Answered by shrutishikha542
0

Answer:

1) 3x + 2y = 11...…(I)

2x + 3y = 4...….(II)

from equation 1

y = (11 - 3x)/2

substituting in 2

2x + 3(11 - 3x)/2 = 4

4x + 33 - 9x = 8

-5x = -25

x = 5

and y = (-2)

2) 7x - 2y = 1...…(I)

3x + 4y = 15...…(II)

from equation 1

x = (1 + 2y)/7

substituting in 2

3(1+2y)/7 +4y = 15

3 + 6y + 28y = 105

34y = 102

y = 3

x = 1

Thank You!!

Mark as brainliest!!

Answered by Anonymous
12

  \huge \: \green{ \boxed{ \pink{ \purple{ \fbox{ \mathfrak{\bigstar{answer ♡}}}}}}}

 \huge{ \red{ \ddot{ \smile}}}

_______________________

3x + 2y = 11..................(1) \\ 2x + 3y = 4.......................(2) \\  \\

from equation 1st,

3x = 11 - 2y \\ x =  \frac{11 - 2y}{3} ........................(3) \\  \\

substituting equation (3)in( 2),

=> \frac{2(11 - 2y)}{3}  + 3y = 4 \\  =>\frac{22 - 4y + 9y}{3}  = 4 \\  \\=> 22 -5y = 12 \\=>  \large  \boxed{ \green{y =  - 2}}

substituting \: value \: of \: y \: in \: (3) \\  \\

=>x =  \frac{11 - 2( - 2)}{3}  \\=> x =  \frac{15}{3}  \\=>   \boxed{ \green{x = 5}}

____________________________

7x - 2y = 1................(1)

3x + 4y = 15...............(2)

from equation 1,

=>7x = 1 + 2y \\  =>x =  \frac{1 + 2y}{7} ..............(3)

substituting equation 3 in 2,

=>3( \frac{1 + 2y}{7} ) + 4y = 15 \\  =>\frac{3 + 6y}{7}  + 4y = 15 \\  \\  =>\frac{3 + 6y + 28y}{7}  = 15 \\ =>3 + 34y = 105 \\=> 34y = 102 \\ \boxed{ \green{  y = 3}}

putting value of y in 3rd equation

x =  \frac{1 + 2(3)}{7}  \\  \\ x =  \frac{7}{7}  \\  \\  \boxed{ \green{x = 1}}

____________________

hops this may help you

 \huge{ \red{ \ddot{ \smile}}}

 \huge \blue{ \mathfrak{thanks♡</p><p>}}

Similar questions