Math, asked by suhanikaushal19, 10 months ago

solve the following system of equestion by matrix method 3x -2y +3z = 8 , 2x +y -z = 1 , 4x -3y +2z =4​

Answers

Answered by rashich1219
0

Given:

Three equations are given -

\[3x - 2y + 3z = 8\], \\\[2x + y - z = 1\] and \[4x - 3y + 2z = 4\].

To Solve:

Solve the above given equation by metric method.

Solution:

Here,  

\[A = \left( {\begin{array}{*{20}{c}}  3&{ - 2}&3 \\   2&1&{ - 1} \\   4&{ - 3}&2 \end{array}} \right)\]

\[ B = \left( {\begin{array}{*{20}{c}}  8 \\   1 \\   4 \end{array}} \right) \]  and \[X = \left({\begin{array}{*{20}{c}}  x \\   y \\   z \end{array}}\right)\]

Since, we know that- \[AX = B\]

Now,

\[ \left( {\begin{array}{*{20}{c}}  3&{ - 2}&3 \\   2&1&{ - 1} \\   4&{ - 3}&2 \end{array}} \right)\left( {\begin{array}{*{20}{c}}  8 \\   1 \\   4 \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  x \\   y \\   z \end{array}} \right)\]

\left( {\begin{array}{*{20}{c}}  {24 - 2 + 12} \\   {16 + 1 - 4} \\   {32 - 3 + 8} 	\end{array}} \right) = \left( {\begin{array}{*{20}{c}}  x \\   y \\   z \end{array}} \right) \hfill \\

\left( {\begin{array}{*{20}{c}}  {34} \\   {13} \\   {37} \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  x \\   y \\   z \end{array}} \right) \hfill \\

On comparing, we get '

X=34, y=13 and z=37.

Hence,

\[X = \left( {\begin{array}{*{20}{c}}  {34} \\   {13} \\   {37} \end{array}} \right)\]

Similar questions