Solve the following system of linear equation by cross multiplication method.
2(ax-by) + (a+4b)=0
2(bx+ay) + (b-4a)=0
Answers
Answered by
5
Answer:
x = -1/2 , y = 2
Step-by-step explanation:
2(ax - by) + (a + 4b) = 0
2(bx + ay) + (b - 4a) =0
The equations become:
2ax - 2by + (a + 4b) = 0
2bx + 2ay + (b - 4a) =0
by Cross multiplication method,
x y 1
-2b a+4b 2a -2b
2a b - 4a 2b 2a
=> x/-2b(b-4a) - 2a(a+4b) = y/2b(a'+4b) -2a(b-4a) = 1 / 4a² + 4b²
=> x/-2(b² + a²) = y/8(b² + a²) = 1/4(a² + b²)
=> x = -2(b² + a²) /4(a² + b²) = -1/2
=> y = 8(b² + a²)/4(a² + b²) = 2.
Similar questions