Math, asked by SharmaShivam, 1 year ago

Solve the following system of linear equations by cross multiplication method :
2(ax-by)+a+4b=0 and
2(bx+ay)+b-4a=0

Answers

Answered by Anonymous
11

\underline{\underline{\mathfrak{\Large{Solution : }}}}



\underline{\textsf{Given,}} \\ \\ \sf \implies 2(ax \: - \: by) \: + \: a \: + \: 4b \: = \: 0  \\  \\  \sf \implies2ax \:  -  \: 2by \:  +  \: (a \:  +  \: 4b) \:  =  \: 0 \qquad...(1) \\  \\ \textsf{And,} \\ \\ \sf \implies 2(bx \: + \: ay) \: + \: b \: - \: 4a \: = \: 0  \\  \\  \sf \implies2bx \:  +  \: 2ay \:  +  \: (b \:  -  \: 4a) \:  =  \: 0 \qquad...(2)





\underline{\textsf{Using Cross Multiplication Method : }} \\ \\ \sf Coe. \: of \: x \qquad \: Coe .\: of \: y \qquad \: Const. term  \\  \\  \sf \:  \quad2a \qquad \qquad - 2b  \qquad\qquad(a +  \: 4b) \\  \\ \sf \:  \quad2b \qquad \qquad \:  \:  \:  \:  \:  2a  \qquad\qquad(b \:  -  \: 4a)




\sf \implies \dfrac{x}{-2b(b \: - \: 4a) \: - \: 2a(a \: + \: 4b)} \: = \: \dfrac{y}{2b(a \: + \: 4b) \: - \: 2a(b \: - \: 4a)} \: = \: \dfrac{1}{2a \: \cdot \: 2a \: - \: 2b \: \cdot \: (-2b)}  \\  \\  \\  \sf \implies \dfrac{x}{ - 2 \{b(b \:  -  \: 4a) \:  +  \: a(a \:  +  \: 4b) \}}  \:  =  \:  \dfrac{y}{2 \{b(a \:  +  \: 4b) \:  -  \: a(b \:  -  \: 4a) \}}  \:  =  \:  \dfrac{1}{4 {a}^{2}  \:  +  \: 4 {b}^{2} }  \\  \\  \\  \sf \implies \dfrac{x}{ - 2  ( {b}^{2} \:   -  \:   \cancel{4ab} \:  +  \:  {a}^{2}  \:  +  \: \cancel{ 4ab}) }  \:  =  \:  \dfrac{y}{2 ( \cancel{ab} \:  +  \: 4 {b}^{2}  \:  -  \:  \cancel{ab }\:  +  \: 4 {a}^{2}) }  \:  =  \:  \dfrac{1}{4 ({a}^{2}  \:  +  \: {b}^{2} )}




\sf \implies \dfrac{x}{-2 \cancel{(a^2 \: + \: b^2)}} \: = \: \dfrac{y}{8 \cancel{(a^2 \: + \: b^2)}} \: = \: \dfrac{1}{4 \cancel{(a^2 \: + \: b^2)} } \\  \\  \\  \sf \implies \dfrac{    \:  \:  \: \: x \: \:  \:  \:  }{ - 2}  \:  =  \:  \dfrac{y}{8}  \:  =  \:  \dfrac{1}{4}  \\  \\  \\  \sf \implies \dfrac{x}{ - 1}  \:  =  \:  \dfrac{y}{4}  \:  =  \:  \dfrac{1}{2}




\underline{\textsf{On Comparison , }} \\ \\ \sf \implies \dfrac{x}{-1} \: = \: \dfrac{1}{2} \\ \\ \sf \: \therefore \: \: x \: = \: -\dfrac{1}{2}  \\ \\ \textsf{And,} \\ \\ \sf \implies \dfrac{y}{4} \: = \: \dfrac{1}{2} \\ \\ \sf \implies y \: = \: \dfrac{4}{2} \\ \\  \sf\:  \: \therefore \: \: y \: = \: 2

akp1772p7zfxr: Plzz vaibhav sir delete my account
Answered by sk181231
1

Answer:

The given system of equation may be written as

2(ax - by) + a + 4b = 0

So, 2ax - 2by + a + 4b ..............(i)

2(bx + ay) + b - 4a = 0

so, 2bx+2ay+b-4a=0................(ii)

compare (i) and (ii) with standard form, we get

a1 = 2a, b1 = -2b, c1 = a + 4b

a2 = 2b, b2 = 2a, c2 = b - 4a

By cross multiplication method

x−2b2+8ab−2a2−8abx−2b2+8ab−2a2−8ab =−y2ab−8a2−2ab−8b2=−y2ab−8a2−2ab−8b2 =14a2+4b2=14a2+4b2

x−2b2−2a2=−y−8a2−8b2=14a2+4b2x−2b2−2a2=−y−8a2−8b2=14a2+4b2

Now, x−2b2−2a2=14a2+4b2x−2b2−2a2=14a2+4b2

⇒x=−12⇒x=−12

And, −y−8a2−8b2=14a2+4b2−y−8a2−8b2=14a2+4b2

⇒y=2⇒y=2

Therefore, the solution of the given pair of equations are −12−12 and 2 respectively.

Similar questions