solve the following system or inequalities graphically
3x+2y≤150,x+4y≤80,x≤15,x≥0,y≥0
Answers
Let sketch this line.
On substituting x = 0, we get
3× 0 + 2y = 150
0 + 2y = 150
y = 75
On substituting y = 0, we get
3x + 0 = 150
3x = 150
x = 50
On substituting x = 0, we get
0 + 4y = 80
4y = 80
y = 20
On substituting y = 0, we get
x + 0 = 80
x = 80
A line parallel to x - axis passes through (15, 0).
EXPLANATION.
Inequalities graphically.
⇒ 3x + 2y ≤ 150. - - - - - (1).
⇒ x + 4y ≤ 80. - - - - - (2).
⇒ x ≤ 15. - - - - - (3).
⇒ x ≥ 0. and y ≥ 0.
As we know that,
We can write equation as.
⇒ 3x + 2y = 150. - - - - - (1).
⇒ x + 4y = 80. - - - - - (2).
⇒ x = 15. - - - - - (3).
From equation (1), we get.
⇒ 3x + 2y = 150. - - - - - (1).
Put the value of x = 0 in the equation, we get.
⇒ 3(0) + 2y = 150.
⇒ 2y = 150.
⇒ y = 75.
Their Co-ordinates = (0,75).
Put the value of y = 0 in the equation, we get.
⇒ 3x + 2(0) = 150.
⇒ 3x = 150.
⇒ x = 50.
Their Co-ordinates = (50,0).
From equation (2), we get.
⇒ x + 4y = 80. - - - - - (2).
Put the value of x = 0 in the equation, we get.
⇒ (0) + 4y = 80.
⇒ 4y = 80.
⇒ y = 20.
Their Co-ordinates = (0,20).
Put the value of y = 0 in the equation, we get.
⇒ x + 4(0) = 80.
⇒ x = 80.
Their Co-ordinates = (80,0).
From equation (3), we get.
⇒ x = 15.
Their Co-ordinates = (15,0).