Math, asked by harsh526487, 9 months ago

Solve the following systems of equations : 2/ x + 3/ y = 9/ x.y : 4/ x + 9/ y = 21/ x.y ​

Answers

Answered by SarcasticL0ve
15

AsnwEr:

Here We have,

\;\;\;\;\;\;\;\star\;{\boxed{\sf{ \dfrac{2}{x} + \dfrac{3}{y} = \dfrac{9}{xy}}}}

⠀⠀⠀⠀

:\implies\sf \dfrac{2y + 3x}{xy} = \dfrac{9}{xy}

⠀⠀⠀⠀

:\implies\sf 2x + 3y = 9⠀⠀⠀⠀⠀⠀⠀eq.(1)

⠀⠀⠀⠀

And,

⠀⠀⠀⠀

\;\;\;\;\;\;\;\star\;{\boxed{\sf{ \dfrac{4}{x} + \dfrac{9}{y} = \dfrac{21}{xy}}}}

⠀⠀⠀⠀

:\implies\sf \dfrac{4y + 9x}{xy} = \dfrac{21}{xy}

⠀⠀⠀⠀

:\implies\sf 4y + 9x = 21⠀⠀⠀⠀⠀⠀⠀eq.(2)

━━━━━━━━━━━━━━━

★ From eq(1) -

⠀⠀⠀⠀

:\implies\sf 2x + 3y = 9

⠀⠀⠀⠀

:\implies\sf 3x = 9 - 2y

⠀⠀⠀⠀

:\implies\sf \red{x = \dfrac{9 - 2y}{3}}⠀⠀⠀⠀⠀⠀⠀eq.(3)

⠀⠀⠀⠀

★ Now, Substitute value of x from eq(3) in eq(2) -

⠀⠀⠀⠀

:\implies\sf 4y + \cancel{9} \bigg( \dfrac{9 - 2y}{ \cancel{3}} \bigg)  = 21

⠀⠀⠀⠀

:\implies\sf 4y + 3(9 - 2y) = 21

⠀⠀⠀⠀

:\implies\sf 4y + 27 - 6y = 21

⠀⠀⠀⠀

:\implies\sf - 2y = 21 - 27

⠀⠀⠀⠀

:\implies\sf - 2y = - 6

⠀⠀⠀⠀

:\implies\sf y = \cancel{ \dfrac{-6}{-2}}

⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\pink{y = 3}}}}}\;\bigstar

⠀⠀⠀⠀

★ Now, Put value of y in eq(3) -

⠀⠀⠀⠀

:\implies\sf x = \dfrac{9 - 2 \times 3}{3}

⠀⠀⠀⠀

:\implies\sf x = \dfrac{9 - 6}{3}

⠀⠀⠀⠀

:\implies\sf x = \cancel{ \dfrac{3}{3}}

⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\purple{y = 1}}}}}\;\bigstar

⠀⠀⠀⠀

\therefore Hence, Solution of the system of equation is x = 3 , y = 1.

Similar questions