Math, asked by niveditaekka46, 2 months ago

Solve the following systems of equations by using cross multiplication method. ax+by-(a-b)=0 ; bx-ay-(a-b)=0.​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given pair of equations are

\rm :\longmapsto\:ax + by - (a - b) = 0

can be rewritten as

\rm :\longmapsto\:ax + by  = a - b -  -  - (1)

and

\rm :\longmapsto\:bx  - ay - (a - b) = 0

\rm :\longmapsto\:bx  - ay  = a - b -  -  - (2)

Now,

Using Cross Multiplication Method,

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf b & \sf a  -  b & \sf a & \sf b\\ \\ \sf - a & \sf {a} - {b} & \sf b & \sf - a\\ \end{array}} \\ \end{gathered}

So,

\rm :\longmapsto\:\dfrac{x}{b(a - b) + a(a - b)}  = \dfrac{y}{b(a - b) - a((a - b)}  = \dfrac{ - 1}{ -  {a}^{2} -  {b}^{2}  }

\rm :\longmapsto\:\dfrac{x}{(a - b)(a +  b)}  = \dfrac{y}{ - (a - b)(a - b)}  = \dfrac{ 1}{{a}^{2} + {b}^{2}  }

\rm :\longmapsto\:\dfrac{x}{ {a}^{2} -  {b}^{2} }  = \dfrac{y}{ - (a - b)^{2} }  = \dfrac{ 1}{{a}^{2} + {b}^{2}  }

So,

Taking first and third member, we get

\bf\implies \:x = \dfrac{ {a}^{2}  -  {b}^{2} }{ {a}^{2} +  {b}^{2} }

and

On taking second and third member, we get

\bf\implies \:y =  -  \: \dfrac{ {(a - b)}^{2} }{ {a}^{2}  +  {b}^{2} }

Additional Information : -

Solution by Elimination Method

\rm :\longmapsto\:ax + by  = a - b -  -  - (1)

and

\rm :\longmapsto\:bx  - ay  = a - b -  -  - (2)

Multiply equation (1) by a and (2) by b, we get

\rm :\longmapsto\: {a}^{2} x + aby  =  {a}^{2}  - ab -  -  - (3)

and

\rm :\longmapsto\: {b}^{2} x  - aby  = ab -  {b}^{2}  -  -  - (4)

Now, Adding equation (3) and (4), we get

\rm :\longmapsto\:x( {a}^{2} +  {b}^{2}) =  {a}^{2} -  {b}^{2}

\bf\implies \:x = \dfrac{ {a}^{2}  -  {b}^{2} }{ {a}^{2} +  {b}^{2} }

On substituting the value of x in equation (1) we get

\rm :\longmapsto\:a  \times \dfrac{ {a}^{2} -  {b}^{2}  }{ {a}^{2}  +  {b}^{2} } + by  = a - b

\rm :\longmapsto\:by = a - b -  \dfrac{a(a + b)(a - b)}{ {a}^{2} +{b}^{2} }

\rm :\longmapsto\:by = (a - b)\bigg(1 -  \dfrac{a(a + b)}{ {a}^{2} +{b}^{2} }\bigg)

\rm :\longmapsto\:by = (a - b)\bigg(\dfrac{ {a}^{2} +  {b}^{2} -  {a}^{2}  - ab}{ {a}^{2} +{b}^{2} }\bigg)

\rm :\longmapsto\:by = (a - b)\bigg(\dfrac{ {b}^{2} - ab}{ {a}^{2} +{b}^{2} }\bigg)

\rm :\longmapsto\:by = b(a - b)\bigg(\dfrac{ {b} - a}{ {a}^{2} +{b}^{2} }\bigg)

\rm :\longmapsto\:y = (a - b)\bigg(\dfrac{ {b} - a}{ {a}^{2} +{b}^{2} }\bigg)

\bf\implies \:y =  -  \: \dfrac{ {(a - b)}^{2} }{ {a}^{2}  +  {b}^{2} }

Similar questions
Math, 10 months ago