Math, asked by TrustedAnswerer19, 1 month ago

Solve the following :

 \bf \: if \:  \:  \:  \rm \: r  \:  sin \theta = 3 \:  \: and \: \:  \:  r = 4(1 + sin\theta) \\    \sf \: then \:  \: (r,\theta)  \:  \equiv \:  ? \\  \\  \rm \: where \:  \:  \: r > 0 \:  \:  \: and \:  \:  - \pi \leqslant \theta \leqslant \pi

Answers

Answered by sarivuselvi
7

Step-by-step explanation:

here you go if you are satisfied thank me

Attachments:
Answered by mathdude500
32

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:rsin\theta  = 3 -  -  -  - (1)

and

\rm :\longmapsto\:r = 4(1 + sin\theta ) -  -  - (2)

So, from equation (1),

\rm :\longmapsto\:sin\theta  = \dfrac{3}{r} -  -  -  - (3)

Substituting the value from equation (3) in equation (2), we get

\rm :\longmapsto\:r = 4\bigg[1 + \dfrac{3}{r} \bigg]

\rm :\longmapsto\:r = 4\bigg[ \dfrac{r + 3}{r} \bigg]

\rm :\longmapsto\: {r}^{2} = 4r + 12

\rm :\longmapsto\: {r}^{2}  -  4r  -  12 = 0

\rm :\longmapsto\: {r}^{2}  -  6r + 4r  -  12 = 0

\rm :\longmapsto\:r(r - 6) + 2(r - 6) = 0

\rm :\longmapsto\:(r - 6)(r + 2) = 0

\bf\implies \:r = 6 \:  \: or \:  \: r =  -  \: 2 \:  \:  \:  \{r > 0 \}

Now, On substituting the value of r, in equation (1), we get

\rm :\longmapsto\:6sin\theta  = 3

\rm \implies\:sin\theta  = \dfrac{1}{2}

\rm \implies\:sin\theta  = sin \dfrac{\pi}{6}

 \red{\bf \implies\:\theta \:  =  \:  n\pi + {( - 1)}^{n}\dfrac{\pi}{6}  \:  \:  \: \forall \: n \in \: Z }

 \purple{\bf :\longmapsto\:As \: it \: is \: given \: that \:  - \pi  \leqslant  \theta   \leqslant  \pi}

\bf\implies \:\theta  \:  =  \: \dfrac{\pi}{6}, \:  \: \dfrac{5\pi}{6}

Thus,

 \red{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:(r,\theta ) = \begin{cases} &\sf{\bigg(6, \: \dfrac{\pi}{6} \bigg)} \\  \\ &\sf{\bigg(6, \: \dfrac{5\pi}{6} \bigg)} \end{cases}\end{gathered}\end{gathered}}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions