Math, asked by Mister360, 4 months ago

Solve the following

\displaystyle\sf \int (x^e+e^x+e^e) dx

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int( {x}^{e}  +  {e}^{x}  +  {e}^{e} )dx \\

 =  \int{x}^{e} dx +  \int {e}^{x}dx  +  \int {e}^{e} dx \\

 =  \frac{ {x}^{e + 1} }{e + 1}  +  {e}^{x}  +  {e}^{e} x + c \\

Answered by amansharma264
5

EXPLANATION.

\sf \implies \int(x^{e} + e^{x} + e^{e} )dx.

As we know that,

We can integrate individuals, we get.

\sf \implies \int(x^{e} )dx + \int (e^{x} )dx + \int(e^{e} )dx

As we know that,

⇒ ∫xⁿdx = xⁿ⁺¹/n + 1 + c.

\sf \implies \dfrac{x^{e + 1} }{e + 1} + e^{x} + e^{e} .x + c.

                                                                                                                       

MORE INFORMATION.

Standard integrals.

(1) = ∫0.dx = c.

(2) = ∫1.dx = x + c.

(3) = ∫k dx = kx + c, (k ∈ R).

(4) = ∫xⁿdx = xⁿ⁺¹/n + 1 + c, (n ≠ -1).

(5) = ∫dx/x = ㏒(x) + c.

(6) = ∫eˣdx = eˣ + c.

(7) = ∫aˣdx = aˣ/㏒(a) + c = aˣ ㏒(e) + c.

Similar questions