Math, asked by octoflower06, 19 days ago

Solve the following
 \frac{4m - 3}{4 }  -  \frac{3m + 4}{3} =  \frac{1}{4} - m

Answers

Answered by Anonymous
6

Given :-

 \quad \leadsto \quad \sf \dfrac{4m-3}{4} - \dfrac{3m+4}{3} = \dfrac{1}{4} - m

To Find:-

Value of ' m '

Solution :-

Let's start with the begin :)

 \quad \leadsto \quad \sf \dfrac{4m-3}{4} - \dfrac{3m+4}{3} = \dfrac{1}{4} - m

Take LCM on LHS ;

 { : \implies \quad \sf \dfrac{3 ( 4m - 3 ) - 4 ( 3m + 4 )}{4 \times 3} = \dfrac{1}{4} - m }

 { : \implies \quad \sf \dfrac{12m - 9 - 12m - 16}{12} = \dfrac{1}{4} - m }

 { : \implies \quad \sf \dfrac{\cancel{12m} - 9 - \cancel{12m} - 16}{12} = \dfrac{1}{4} - m }

 { : \implies \quad \sf - \dfrac{25}{12} = \dfrac{1}{4} - m }

Transpose ' m ' to LHS ;

 { : \implies \quad \sf m - \dfrac{25}{12} = \dfrac{1}{4}}

Transpose "  \bf \cfrac{25}{12} " to RHS ;

 { : \implies \quad \sf m = \dfrac{1}{4} + \dfrac{25}{12}}

 { : \implies \quad \sf m = \dfrac{3 + 25}{12}}

 { : \implies \quad \sf m = \dfrac{28}{12}}

 { : \implies \quad \sf m = \cancel{\dfrac{28}{12}}}

 { : \implies \quad \sf m = \dfrac{14}{6}}

 { : \implies \quad \sf m = \cancel{\dfrac{14}{6}}}

 { : \implies \quad \bf \therefore \quad m = \dfrac{7}{3}}

Henceforth , The Required Answer is  { \pmb { \blue { \bf { \cfrac{7}{3}}}}} :)

Answered by Dalfon
59

Step-by-step explanation:

\frac{4m \:  -  \: 3}{4}  \:  -  \:  \frac{3m \:  +  \: 4}{3}  \:  =  \:  \frac{1}{4}  \:  -  \: m \\ \\  \frac{3(4m \:  -  \: 3) - 4(3m \:  +  \: 4)}{12}  \:  =  \:  \frac{1}{4}  \:  -  \: m \\ \\  \frac{12m - 9 - 12m - 16}{12}  \:  =  \:  \frac{1}{4}  - m \\ \\ \frac{ - 25}{12}  \:  =  \:  \frac{1}{4}  - m \\ \\ m \:  =  \:   \frac{1}{4}  +  \frac{25}{12} \: \\ \\ m =  \frac{3 + 25}{12} \\  \\ m \:  =  \:  \frac{28}{12} \\  \\ m \:  =  \:  \frac{7}{3}

Similar questions