Math, asked by aryan021212, 8 hours ago

Solve the following

 \int \:  \frac{dx}{x \sqrt{ {x}^{15}  - 1} }

Answers

Answered by vikkiain
1

\frac{2}{15} tan^{ - 1}   \sqrt{ {x}^{15}  - 1}  \:  \:  + c

Step-by-step explanation:

Given, \\  \int \frac{dx}{x \sqrt{ {x}^{15}  - 1} }  \\  =  \int \frac{ {x}^{14}dx }{ {x}^{15} \sqrt{ {x}^{15}  - 1}  }  \\ let \:  \:  \: y =   \sqrt{ {x}^{15}  - 1}  \\  {y}^{2}  =  {x}^{15}  - 1 \\  {y}^{2}  + 1 =  {x}^{15}  \\ Differentiating  \:  \: with  \:  \: respect  \:  \: to \:  \:  x, \\ 2ydy = 15 {x}^{14} dx \\  {x}^{14} dx =  \frac{2ydy}{15}  \\ putting  \:  \: values\:  \\  \int \frac{2ydy}{15( {y}^{2} + 1 )y}  \\  =  \frac{2}{15}  \int \frac{dy}{ {y}^{2}  + 1}  \\  =  \frac{2}{15} tan^{ - 1}y \:  \:  + c \\  =  \frac{2}{15} tan^{ - 1}   \sqrt{ {x}^{15}  - 1}  \:  \:  + c

Similar questions