Math, asked by madhav5245, 18 days ago

Solve the following

 \int \:   \frac{sin3x}{sin5x \: sin2x}  \: dx

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int\rm  \frac{sin3x}{sin5x \: sin2x} \: dx \\

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{sin(5x - 2x)}{sin5x \: sin2x} \: dx \\

We know,

\color{green}\boxed{ \rm{ \:sin(x - y) = sinx \: cosy \:  -  \: siny \: cosx \: }} \\

So, using this result, we get

\rm \:  =  \: \displaystyle\int\rm  \frac{sin5xcos2x - sin2xcos5x}{sin5x \: sin2x} \: dx \\

\rm \:  =  \: \displaystyle\int\rm  \frac{sin5xcos2x}{sin5x \: sin2x} \: dx  - \displaystyle\int\rm  \frac{cos5xsin2x}{sin5xsin2x} \: dx \\

\rm \:  =  \: \displaystyle\int\rm cot2x \: dx \:  -  \: \displaystyle\int\rm cot5x \: dx \\

We know,

\color{green}\boxed{ \rm{ \:\displaystyle\int\rm cotx \: dx \:  =  \: log |sinx|  + c \: }} \\

So, using this result, we get

\rm \:  =  \: \dfrac{log |sin2x| }{2}  - \dfrac{log |sin5x| }{5}  + c \\

Hence,

\color{green}\boxed{ \rm{ \:\displaystyle\int\rm  \frac{sin3x}{sin5x \: sin2x} dx =  \: \dfrac{log |sin2x| }{2}  - \dfrac{log |sin5x| }{5}  + c }}\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by ariyakaushik092
0

Step-by-step explanation:

Given integral is

\begin{gathered}\rm \: \displaystyle\int\rm \frac{sin3x}{sin5x \: sin2x} \: dx \\ \end{gathered}

sin5xsin2x

sin3x

dx

can be rewritten as

\begin{gathered}\rm \: = \: \displaystyle\int\rm \frac{sin(5x - 2x)}{sin5x \: sin2x} \: dx \\ \end{gathered}

=∫

sin5xsin2x

sin(5x−2x)

dx

We know,

\begin{gathered}\color{green}\boxed{ \rm{ \:sin(x - y) = sinx \: cosy \: - \: siny \: cosx \: }} \\ \end{gathered}

sin(x−y)=sinxcosy−sinycosx

So, using this result, we get

\begin{gathered}\rm \: = \: \displaystyle\int\rm \frac{sin5xcos2x - sin2xcos5x}{sin5x \: sin2x} \: dx \\ \end{gathered}

=∫

sin5xsin2x

sin5xcos2x−sin2xcos5x

dx

\begin{gathered}\rm \: = \: \displaystyle\int\rm \frac{sin5xcos2x}{sin5x \: sin2x} \: dx - \displaystyle\int\rm \frac{cos5xsin2x}{sin5xsin2x} \: dx \\ \end{gathered}

=∫

sin5xsin2x

sin5xcos2x

dx−∫

sin5xsin2x

cos5xsin2x

dx

\begin{gathered}\rm \: = \: \displaystyle\int\rm cot2x \: dx \: - \: \displaystyle\int\rm cot5x \: dx \\ \end{gathered}

=∫cot2xdx−∫cot5xdx

We know,

\begin{gathered}\color{green}\boxed{ \rm{ \:\displaystyle\int\rm cotx \: dx \: = \: log |sinx| + c \: }} \\ \end{gathered}

∫cotxdx=log∣sinx∣+c

So, using this result, we get

\begin{gathered}\rm \: = \: \dfrac{log |sin2x| }{2} - \dfrac{log |sin5x| }{5} + c \\ \end{gathered}

=

2

log∣sin2x∣

5

log∣sin5x∣

+c

Hence,

\begin{gathered}\color{green}\boxed{ \rm{ \:\displaystyle\int\rm \frac{sin3x}{sin5x \: sin2x} dx = \: \dfrac{log |sin2x| }{2} - \dfrac{log |sin5x| }{5} + c }}\\ \end{gathered}

sin5xsin2x

sin3x

dx=

2

log∣sin2x∣

5

log∣sin5x∣

+c

Similar questions