Solve the following
Answers
Given integral is
can be rewritten as
We know,
So, using this result, we get
We know,
So, using this result, we get
Hence,
Additional Information :-
Step-by-step explanation:
Given integral is
\begin{gathered}\rm \: \displaystyle\int\rm \frac{sin3x}{sin5x \: sin2x} \: dx \\ \end{gathered}
∫
sin5xsin2x
sin3x
dx
can be rewritten as
\begin{gathered}\rm \: = \: \displaystyle\int\rm \frac{sin(5x - 2x)}{sin5x \: sin2x} \: dx \\ \end{gathered}
=∫
sin5xsin2x
sin(5x−2x)
dx
We know,
\begin{gathered}\color{green}\boxed{ \rm{ \:sin(x - y) = sinx \: cosy \: - \: siny \: cosx \: }} \\ \end{gathered}
sin(x−y)=sinxcosy−sinycosx
So, using this result, we get
\begin{gathered}\rm \: = \: \displaystyle\int\rm \frac{sin5xcos2x - sin2xcos5x}{sin5x \: sin2x} \: dx \\ \end{gathered}
=∫
sin5xsin2x
sin5xcos2x−sin2xcos5x
dx
\begin{gathered}\rm \: = \: \displaystyle\int\rm \frac{sin5xcos2x}{sin5x \: sin2x} \: dx - \displaystyle\int\rm \frac{cos5xsin2x}{sin5xsin2x} \: dx \\ \end{gathered}
=∫
sin5xsin2x
sin5xcos2x
dx−∫
sin5xsin2x
cos5xsin2x
dx
\begin{gathered}\rm \: = \: \displaystyle\int\rm cot2x \: dx \: - \: \displaystyle\int\rm cot5x \: dx \\ \end{gathered}
=∫cot2xdx−∫cot5xdx
We know,
\begin{gathered}\color{green}\boxed{ \rm{ \:\displaystyle\int\rm cotx \: dx \: = \: log |sinx| + c \: }} \\ \end{gathered}
∫cotxdx=log∣sinx∣+c
So, using this result, we get
\begin{gathered}\rm \: = \: \dfrac{log |sin2x| }{2} - \dfrac{log |sin5x| }{5} + c \\ \end{gathered}
=
2
log∣sin2x∣
−
5
log∣sin5x∣
+c
Hence,
\begin{gathered}\color{green}\boxed{ \rm{ \:\displaystyle\int\rm \frac{sin3x}{sin5x \: sin2x} dx = \: \dfrac{log |sin2x| }{2} - \dfrac{log |sin5x| }{5} + c }}\\ \end{gathered}
∫
sin5xsin2x
sin3x
dx=
2
log∣sin2x∣
−
5
log∣sin5x∣
+c