Math, asked by swanhayden7, 12 hours ago

Solve the following

 \int \:  \frac{ {x}^{ \frac{1}{2} } }{1 +  {x}^{ \frac{3}{4} } }  \: dx

Answers

Answered by mathdude500
43

\large\underline{\sf{Solution-}}

Given integral is

 \displaystyle\int\rm  \frac{{\bigg( x\bigg) }^{\dfrac{1}{2} }}{1 + {\bigg( x \bigg) }^{\dfrac{3}{4} }}  \: dx \\

To evaluate this integral, we have to first remove the fractional exponents from the integrand.

So, we substitute

x =  {y}^{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg[\rm\implies \:y = {\bigg(x\bigg) }^{\dfrac{1}{4} }\bigg]

\rm\implies \:dx =  {4y}^{3} \: dy

So, on substituting these values, above integral can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{ {y}^{2} }{1 +  {y}^{3} } \times  {4y}^{3} \: dy

\rm \:  =  \: 4\displaystyle\int\rm  \frac{  {y}^{3} \times  {y}^{2} }{1 +  {y}^{3} } \: dy

To evaluate this integral further, we substitute

\rm \: 1 +  {y}^{3} = t

\rm \: {y}^{3} = t - 1

\rm \:  {3y}^{2} \: dy \:  =  \: dt

\rm\implies \: {y}^{2} \: dy \:  =  \: \dfrac{dt}{3}

So, on substituting these values in above integral, we get

\rm \:  =  \: 4\displaystyle\int\rm  \frac{(t - 1)}{t} \:  \times \dfrac{1}{3} \: dt

\rm \:  =  \: \dfrac{4}{3} \displaystyle\int\rm  \frac{(t - 1)}{t}  \: dt

\rm \:  =  \: \dfrac{4}{3} \displaystyle\int\rm \bigg[1 -  \frac{1}{t} \bigg] \: dt

\rm \:  =  \: \dfrac{4}{3} \bigg(t \:  -  \: log |t|\bigg) + c

\rm \:  =  \: \dfrac{4}{3} \bigg( {y}^{3}  + 1 \:  -  \: log | {y}^{3}  + 1|\bigg) + c

\rm \:  =  \: \dfrac{4}{3} \bigg[ {\bigg(x \bigg) }^{\dfrac{3}{4} }  + 1 \:  -  \: log \bigg| {\bigg(x\bigg) }^{\dfrac{3}{4} }  + 1\bigg|\bigg]+ c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by TheBestWriter
19

And Now,

 \bold{ \sf \large \to now} \sf  \\  \\  \to \sf \: 4 \int \:  \frac{(t - 1)}{t}  \times  \frac{1}{3} dt \\  \\  \to \sf \:  \frac{4}{3}  \int \:  \frac{(t - 1)}{t} dt \\  \\  \sf \to \:  \frac{4}{3}  \int \: (1 -  \frac{1}{t} )dt \\  \\  \to \sf \:  \frac{4}{3}  \int \: (t - log |t|)tc \\  \\  \sf \to \:  \frac{4}{3} ( {y}^{3}  + 1 - log | {y}^{3} + 1 | )tc \\  \\  \boxed{ \large{ \rm \bold{ \green{ \frac{4}{3}((x)  ^{ \frac{3}{4}  } + 1log |(x) ^{ \frac{3}{4} }  + 1| )   + c}}}}

Attachments:
Similar questions