Math, asked by karansinghsaggu, 3 days ago

solve the following

 \int \:  {sec}^{4}x \: tanx \: dx \:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int\rm   {sec}^{4}x \: tanx \: dx \\

can be rewritten as

\rm \: =  \:  \displaystyle\int\rm   {sec}^{2}x \:  \times  \:  {sec}^{2}x \times   \: tanx \: dx \\

can be further rewritten as

\rm \:  =  \: \displaystyle\int\rm   {sec}^{2}x \:  \times  \: (1 +  {tan}^{2}x)  \times   \: tanx \: dx \\

can be further rearrange as

\rm \:  =  \: \displaystyle\int\rm   tanx \:  \times  \: (1 +  {tan}^{2}x)  \times   \:  {sec}^{2}x  \: dx \\

To evaluate this integral, we use method of Substitution,

So, substitute

\rm \: tanx \:  =  \: y \\

\rm \:  {sec}^{2}x \: dx \:  =  \: dy \\

So, on substituting these values, we get

\rm \:  =  \: \displaystyle\int\rm  y(1 +  {y}^{2}) \: dy \\

\rm \:  =  \: \displaystyle\int\rm  (y +  {y}^{3})\: dy \\

We know,

\color{green}\boxed{ \rm{ \:\displaystyle\int\rm   {x}^{n}  \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c \: }} \\

So, using this result, we get

\rm \:  =  \: \dfrac{ {y}^{1 + 1} }{1 + 1}  + \dfrac{ {y}^{3 + 1} }{3 + 1}  + c \\

\rm \:  =  \: \dfrac{ {y}^{2} }{2}  + \dfrac{ {y}^{4} }{4}  + c \\

\rm \:  =  \: \dfrac{ {tan}^{2}x }{2}  + \dfrac{ {tan}^{4}x }{4}  + c \\

Hence,

\color{green}\rm\implies \:\boxed{ \rm{ \:\displaystyle\int\rm   {sec}^{4}x \: tanx \: dx  =  \: \dfrac{ {tan}^{2}x }{2}  + \dfrac{ {tan}^{4}x }{4}  + c \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by talpadadilip417
0

\color{darkcyan} \underline{ \begin{array}{  || |l| ||  }  \hline  \color{magenta} \\ \hline \boxed{ \text{ \tt \: Solution:-}  }  \end{array}}

Step-by-step explanation:

 \red{ \begin{aligned} \tt \int \sec ^{4} x \tan x d x & \tt=\int \sec ^{2} x \cdot \sec ^{2} x \tan x d x \\ \\  & \tt=\int\left(1+\tan ^{2} x\right) \sec ^{2} x \tan x d x \\ \\  & \tt=\int\left(1+t^{2}\right) t d t, \text { where } \tan x=t \\  \\ & \tt=\int t d t+\int t^{3} d t=\frac{t^{2}}{2}+\frac{t^{4}}{4}+C \\ \\  & \tt=\frac{1}{2} \tan ^{2} x+\frac{1}{4} \tan ^{4} x+C . \end{aligned} }

Similar questions