Math, asked by AnanyaBaalveer, 3 days ago

Solve the following
 log_{3 \sqrt{2} }324

Answers

Answered by jitendragurav097
1

Step-by-step explanation:

Join / Login

Class 11

>>Applied Mathematics

>>Logarithm and Antilogarithm

>>Fundamental laws of Logarithms

>>Solve log3√(2)5832 | Maths Questions

Question

Solve log325832

Easy

Open in App

Solution

Verified by Toppr

3∣5832

_____________

3∣1944

_____________

3∣648

_____________

3∣216

_____________

3∣72

_____________

3∣24

_____________

      8

______________

⇒5832=36×23=(2)6×36=(32)6

⇒log325832=6.

Attachments:
Answered by anindyaadhikari13
4

Solution:

Let us assume that:

 \rm \longrightarrow log_{3 \sqrt{2} }(324)  = x

Then:

 \rm \longrightarrow {(3 \sqrt{2} )}^{x} = 324

Can be written as:

 \rm \longrightarrow {( \sqrt{9}  \sqrt{2} )}^{x} = 324

 \rm \longrightarrow {(\sqrt{18} )}^{x} = 324

 \rm \longrightarrow {(\sqrt{18} )}^{x} =18 \times 18

 \rm \longrightarrow {(\sqrt{18} )}^{x} = {18}^{2}

 \rm \longrightarrow {(18)}^{ \dfrac{x}{2} } = {18}^{2}

Comparing base, we get:

 \rm \longrightarrow \dfrac{x}{2} = 2

 \rm \longrightarrow x = 4

Therefore:

 \rm \longrightarrow log_{3 \sqrt{2} }(324)  = 4

★ Which is our required answer.

Learn More:

 \rm 1. \:  \:  {a}^{n} = b \implies log_{a}(b)  = n

 \rm 2. \:  \: log_{a}(1)  = 0, \: a \neq0,1

 \rm 3. \:  \: log_{a}(a)  = 1, \: a \neq0,1

 \rm 4. \:  \: log_{a}(x)  = log_{a}(y) \implies x = y

 \rm 5. \:  \: log_{e}(x) =  ln(x)

 \rm6. \:  \:  log_{a}(x) + log_{a}(y) = log_{a}(xy)

 \rm7. \:  \:  log_{a}(x) - log_{a}(y) = log_{a} \bigg( \dfrac{x}{y} \bigg)

 \rm 8. \:  \: log_{a}( {x}^{n} ) =  n\log_{a}(x)

 \rm 9. \:  \:  log_{a}(m) =  \dfrac{ log_{b}(m) }{ log_{b}(a) },m > 0,b > 0,a \ne1,b \ne1

 \rm 10. \:  \: log_{a}(b) = \dfrac{1}{ log_{b}(a) }

Similar questions