Math, asked by Anonymous, 2 months ago

Solve the following :-

 \sf \dfrac{ {81}^{ \bigg(\dfrac{1}{ log_{5}(9) } \bigg)} + {3}^{ \bigg( \dfrac{3}{ log_{ \sqrt{6} }(3) } \bigg)} }{409} \times \bigg[ {(7)}^{ \bigg(\dfrac{2}{ log_{25}(7) } \bigg) } - {(125)}^{( log_{25}(6) )} \bigg ]

Topic - Logarithm

Class - 11th

Dangerous Question isn't it !

Don't spam ! ​

Answers

Answered by AestheticSky
117

  \bigstar\large {\pmb{ \sf Question : -   }}

\sf \dfrac{ {81}^{ \bigg(\dfrac{1}{ log_{5}(9) } \bigg)} + {3}^{ \bigg( \dfrac{3}{ log_{ \sqrt{6} }(3) } \bigg)} }{409} \times \bigg[ {(7)}^{ \bigg(\dfrac{2}{ log_{25}(7) } \bigg) } - {(125)}^{( log_{25}(6) )} \bigg ]

\bigstar\large {\pmb{ \sf Solution: -   }}

  • There are 4 terms in this expression
  • We will be solving all of them individually.

Let's get started :D

 \maltese   \: \sf  {81}^{ \bigg( \dfrac{1}{ log_{5}(9)  }  \bigg)}

we know that :-

 \leadsto \large \underline{ \boxed {\pink{{ \frak{  \dfrac{1}{  log_{b}(a)  }  =   log_{a}(b) }}}}} \bigstar

  \dag \:  \underline \frak{applying \: the \: same \: concept \: for \: the \: equation : -  }

  : \implies  \large \: \sf  {81}^{ \bigg( \dfrac{1}{ log_{5}(9)  }  \bigg)}  =  { {9}^{2} }^{ (log_{9}(5)) }

  : \implies \large\sf  {9}^{ log_{9}( {5}^{2} ) }

According to the following property:-

 \leadsto \large \underline{ \boxed {\pink{{ \frak{  {a}^{ log_{a}(b)  } = b  }}}}} \bigstar

 :\implies  \large \sf  {9}^{( log_{9}(25) )}

:\implies\large\red{ \bf25}

_____________________________

 \maltese  \large \: \sf  {3}^{ \bigg( \dfrac{3}{ log_{ \sqrt{6} }(3)  }  \bigg)}

 : \implies \large \sf{  {3}^{3 \times  log_{3}( \sqrt{6} ) }  }

 :   \implies\large \sf  {3}^{ log_{3}( (\sqrt{6}) ^{3}  ) }  =  { (\sqrt{6}) }^{3}

  : \implies \large \red{\bf6 \sqrt{6}  }

______________________________

 \maltese \:  \sf{(7)}^{ \bigg(\dfrac{2}{ log_{25}(7) } \bigg) }

 :  \implies\sf \large {  { \sqrt{ 7}}^{2 \times  log_{7}(  25  ) }  }

  : \implies  \sf   \large{7}^{ \frac{1}{2} \times 2 \times  log_{7}(25)   }

  : \implies\red{ \bf 25}

______________________________

\maltese \:   \large\sf{(125)}^{ ( log_{25}(6)  ) }

 :  \implies \sf \large  {5}^{3  \times  log_{ {5}^{2} }(6) }

 : \implies \sf  \large 5 ^{ \frac{3}{2}  \times  log_{5}(6) }

  :   \implies \sf  {6}^{ \frac{3}{2} }

:\implies\red{\bf 6 \sqrt{6}}

______________________________

 \dag \:  \underline \frak{Substituting \: the \: Above \: values \: in \: the \: given\: expression : -  }

 \rightarrow  \sf  \dfrac{25 + 6  \sqrt{6} }{409}  \times 25 - 6 \sqrt{6}

 \rightarrow \sf  \dfrac{ \cancel{409}}{ \cancel{409}}

 \rightarrow  \boxed {\pink{{ \frak{1}}}} \bigstar

______________________________

Hope u got what u were looking for :D

Similar questions