Math, asked by aryan021212, 15 hours ago

Solve the following

y =  {tan}^{ - 1}  \frac{5x}{1 -  {6x}^{2} }  \: find \frac{dy}{dx}

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {tan}^{ - 1}\bigg[\dfrac{5x}{1 -  {6x}^{2} } \bigg]

can be rewritten as

\rm :\longmapsto\:y =  {tan}^{ - 1}\bigg[\dfrac{3x + 2x}{1 -  (3x)(2x) } \bigg]

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{  {tan}^{ - 1}\bigg[\dfrac{x + y}{1 - xy} \bigg] = {tan}^{ - 1}x + {tan}^{ - 1}y \: }}} \\

So, using this identity, we get

\rm :\longmapsto\:y = {tan}^{ - 1}3x + {tan}^{ - 1}2x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx}[ {tan}^{ - 1}3x + {tan}^{ - 1}2x]

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}{tan}^{ - 1}x =  \frac{1}{1 +  {x}^{2} } \: }}} \\

So, using this result, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{1 +  {(3x)}^{2} }\dfrac{d}{dx}(3x) + \dfrac{1}{1 +  {(2x)}^{2} }\dfrac{d}{dx}(2x)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{3}{1 + {9x}^{2} } + \dfrac{2}{1 + {4x}^{2} }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by juwairiyahimran18
0

\large\underline{\sf{Solution-}}

Given function is

</p><p>\rm :\longmapsto\:y = {tan}^{ - 1}\bigg[\dfrac{5x}{1 - {6x}^{2} } \bigg] \\  \\ can \:  \:  \:  be \:  \:  \:  rewritten \:  \:  \:  as \\  \\ \rm :\longmapsto\:y = {tan}^{ - 1}\bigg[\dfrac{3x + 2x}{1 - (3x)(2x) } \bigg]

We know,

\begin{gathered}\purple{\rm :\longmapsto\:\boxed{\tt{ {tan}^{ - 1}\bigg[\dfrac{x + y}{1 - xy} \bigg] = {tan}^{ - 1}x + {tan}^{ - 1}y \: }}} \\ \end{gathered}

So\:\:\:, using\:\:\: this \:\:\:identity,\:\:\: we\:\:\: get

\rm :\longmapsto\:y = {tan}^{ - 1}3x + {tan}^{ - 1}2x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx}[ {tan}^{ - 1}3x + {tan}^{ - 1}2x] \\  \\ We \:  \:  \:  know, \\  \\ \begin{gathered}\purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}{tan}^{ - 1}x = \frac{1}{1 + {x}^{2} } \: }}} \\ \end{gathered}  \\  \\ So, using this result, we get \\  \\ \rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{1 + {(3x)}^{2} }\dfrac{d}{dx}(3x) + \dfrac{1}{1 + {(2x)}^{2} }\dfrac{d}{dx}(2x) \\  \\ \rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{3}{1 + {9x}^{2} } + \dfrac{2}{1 + {4x}^{2} }</p><p> </p><p>

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions