Math, asked by Nekomata, 21 days ago

Solve the following using cross multiplication method :

 \frac{x}{a }  +  \frac{y}{b}  = 2 \\ ax - by \:  = {a}^{2}  -  {b}^{2}

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given equation are

\rm :\longmapsto\:\dfrac{x}{a}  + \dfrac{y}{b}  = 2 -  -  - (1)

and

\rm :\longmapsto\:ax - by =  {a}^{2} -  {b }^{2}  - -  -  - (2)

Now, Equation (1) can be rewritten as

\rm :\longmapsto\:\dfrac{bx + ay}{ab} = 2

\rm :\longmapsto\:bx + ay = 2ab -  -  - (3)

So, we have 2 equations as

 \purple{\rm :\longmapsto\:bx + ay = 2ab}

and

 \purple{\rm :\longmapsto\:ax - by =  {a}^{2} -  {b}^{2}}

So, using Cross multiplication method

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf a & \sf 2ab & \sf b & \sf a\\ \\ \sf - b & \sf {a}^{2} - {b}^{2} & \sf a & \sf - b\\ \end{array}} \\ \end{gathered}

Now, we have

\rm :\longmapsto\:\dfrac{x}{ {a}^{3}  -  {ab}^{2}  +  {2ab}^{2} }  = \dfrac{y}{ {2ba}^{2}  -  {ba}^{2}  +  {b}^{3} }  = \dfrac{ - 1}{ -  {b}^{2} -  {a}^{2}  }

\rm :\longmapsto\:\dfrac{x}{ {a}^{3} +  {ab}^{2} }  = \dfrac{y}{ {ba}^{2}+  {b}^{3} }  = \dfrac{ - 1}{ -  ({b}^{2} + {a}^{2})}

\rm :\longmapsto\:\dfrac{x}{a( {a}^{2} +  {b}^{2} )}  = \dfrac{y}{ b({a}^{2}+  {b}^{2}) }  = \dfrac{ 1}{{b}^{2} + {a}^{2}}

\rm :\longmapsto\:\dfrac{x}{a}  = \dfrac{y}{b}  = 1

\bf\implies \:{ \boxed{ \bf{ \:x = a}}} \:  \:  \: and \:  \:  \:{ \boxed{ \bf{ \:y = b}}}

Verification :-

Consider, Equation (1), we have

\rm :\longmapsto\:\dfrac{x}{a}  + \dfrac{y}{b}  = 2

On substituting the values of x and y, we get

\rm :\longmapsto\:\dfrac{a}{a}  + \dfrac{b}{b}  = 2

\rm :\longmapsto\:1 + 1 = 2

\rm :\longmapsto\:2 = 2

Hence, Verified

Consider Equation (2),

 \purple{\rm :\longmapsto\:ax - by =  {a}^{2} -  {b}^{2}}

On substituting the values of x and y, we get

 \purple{\rm :\longmapsto\:a(a) - b(b) =  {a}^{2} -  {b}^{2}}

 \purple{\rm :\longmapsto\: {a}^{2}  - {b}^{2}  =  {a}^{2} -  {b}^{2}}

Hence, Verified

Similar questions