Math, asked by hadeelhadi25, 1 year ago

solve the following using quadratic formula X square - 15 X + 50 is equal to zero​

Answers

Answered by Sharad001
3

Question :-

Solve the following quadratic equation using the quadratic formula - x² - 15x + 50 = 0.

Answer :-

→ x = 5 or 10

Solution :-

We have ,

→ f(x) → x² - 15x + 50 =0 .....eq.(1)

We know that ,if we have any quadratic equation

f(x) = ax² + bx + c = 0 .....eq.(2)

then the quadratic formula is :

 \mapsto \bf \: x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}  \\

Now,

Comparing eq.(1) and eq.(2)

→ a = 1 , b = -15 and c = 50 ,

now apply the above quadratic formula -

 \to \sf  x = \frac{ - ( - 15)  \pm \sqrt{ {( - 15)}^{2}  - 4  \times 50} }{2 }  \\  \\  \to \sf x =  \frac{15 \pm \sqrt{225 - 200} }{2}  \\  \\  \to \sf \:  x =  \frac{15 \pm \sqrt{25} }{2}  \\  \\  \to \sf \: x =  \frac{15 \pm5}{2}  \\  \\  \star \sf \:  \: case \: (1) \: if \:  \\  \to \sf \: x =  \frac{15 + 5}{2}  \\  \\  \to \:  \sf x =  \frac{20}{2}   \\  \\  \to  \:  \boxed{\sf \: x  = 10} \\  \\  \sf \star \:  \: case \: (2) \: if \:  \\  \\  \to \sf \:  x =  \frac{15 - 5}{2}  \\  \\  \to \sf \:  x =  \frac{10}{2}  \\  \\  \to  \boxed{ \sf x = 5}

Hence ,x = 5 or 10

▬▬▬▬▬▬▬▬▬▬▬▬

Verification :-

  • If x = 5,

→ f(5) = (5)² - 15×5 + 50 = 0

→ 25 - 75 + 50 = 0

→ 25 - 25 = 0

→ 0 = 0

  • If x = 10

→ f(10) = (10)² - 15×10 + 50 = 0

→ 100 - 150 + 50 = 0

→100 - 100 = 0

→ 0 = 0

Hence verified .

▬▬▬▬▬▬▬▬▬▬▬▬

Answered by harshitha202034
1

Answer:

{x}^{2}  - 15x + 50 = 0 \\ x =  \frac{ - b± \sqrt{ {b}^{2} - 4ac } }{2a}  \\ x =  \frac{ - ( - 15)± \sqrt{ {( - 15)}^{2} - 4 \times 1 \times 50 } }{2 \times 1}  \\ x =  \frac{15± \sqrt{225 - 200} }{2}  \\ x =  \frac{15± \sqrt{25} }{2}  \\ x =  \frac{15±5}{2}  \\ x =  \frac{15 + 5}{2}  \:  \:  \: or \:  \:  \: x =  \frac{15 - 5}{2}  \\ x =  \frac{20}{2}  \:  \:  \:  or \:  \:  \: x =  \frac{10}{2}  \\ \boxed{ \large x = \underline{ \underline{ 10}} \:  \:  \: or \:  \:  \: x = \underline{ \underline{5}}}

Similar questions