Math, asked by omkolapkar7989, 2 days ago

Solve the given 125+4X-9x2 State the type of partial fraction (x+1)(x-1)(x+2) a) Linear repeated factor b) Linearnon repeated factor c) Irreducible repeated quadratic factor d) Irreducible non repeated quadratic factor​

Answers

Answered by mahammadsabmulla601
1

Answer:

The factors of the denominator are \displaystyle x,\left({x}^{2}+1\right)x,(x

2

+1), and \displaystyle {\left({x}^{2}+1\right)}^{2}(x

2

+1)

2

. Recall that, when a factor in the denominator is a quadratic that includes at least two terms, the numerator must be of the linear form \displaystyle Ax+BAx+B. So, let’s begin the decomposition.

\displaystyle \frac{{x}^{4}+{x}^{3}+{x}^{2}-x+1}{x{\left({x}^{2}+1\right)}^{2}}=\frac{A}{x}+\frac{Bx+C}{\left({x}^{2}+1\right)}+\frac{Dx+E}{{\left({x}^{2}+1\right)}^{2}}

x(x

2

+1)

2

x

4

+x

3

+x

2

−x+1

=

x

A

+

(x

2

+1)

Bx+C

+

(x

2

+1)

2

Dx+E

We eliminate the denominators by multiplying each term by \displaystyle x{\left({x}^{2}+1\right)}^{2}x(x

2

+1)

2

. Thus,

\displaystyle {x}^{4}+{x}^{3}+{x}^{2}-x+1=A{\left({x}^{2}+1\right)}^{2}+\left(Bx+C\right)\left(x\right)\left({x}^{2}+1\right)+\left(Dx+E\right)\left(x\right)x

4

+x

3

+x

2

−x+1=A(x

2

+1)

2

+(Bx+C)(x)(x

2

+1)+(Dx+E)(x)

Expand the right side.

x

4

+

x

3

+

x

2

x

+

1

=

A

(

x

4

+

2

x

2

+

1

)

+

B

x

4

+

B

x

2

+

C

x

3

+

C

x

+

D

x

2

+

E

x

=

A

x

4

+

2

A

x

2

+

A

+

B

x

4

+

B

x

2

+

C

x

3

+

C

x

+

D

x

2

+

E

x

x4+x3+x2−x+1=A(x4+2x2+1)+Bx4+Bx2+Cx3+Cx+Dx2+Ex =Ax4+2Ax2+A+Bx4+Bx2+Cx3+Cx+Dx2+Ex

Now we will collect like terms.

\displaystyle {x}^{4}+{x}^{3}+{x}^{2}-x+1=\left(A+B\right){x}^{4}+\left(C\right){x}^{3}+\left(2A+B+D\right){x}^{2}+\left(C+E\right)x+Ax

4

+x

3

+x

2

−x+1=(A+B)x

4

+(C)x

3

+(2A+B+D)x

2

+(C+E)x+A

Set up the system of equations matching corresponding coefficients on each side of the equal sign.

A

+

B

=

1

C

=

1

2

A

+

B

+

D

=

1

C

+

E

=

1

A

=

1

A+B=1 C=12A+B+D=1 C+E=−1 A=1

We can use substitution from this point. Substitute \displaystyle A=1A=1 into the first equation.

1

+

B

=

1

B

=

0

1+B=1 B=0

Substitute \displaystyle A=1A=1 and \displaystyle B=0B=0 into the third equation.

2

(

1

)

+

0

+

D

=

1

D

=

1

2(1)+0+D=1 D=−1

Substitute \displaystyle C=1C=1 into the fourth equation.

1

+

E

=

1

E

=

2

1+E=−1 E=−2

Now we have solved for all of the unknowns on the right side of the equal sign. We have \displaystyle A=1A=1, \displaystyle B=0B=0, \displaystyle C=1C=1, \displaystyle D=-1D=−1, and \displaystyle E=-2E=−2. We can write the decomposition as follows:

\displaystyle \frac{{x}^{4}+{x}^{3}+{x}^{2}-x+1}{x{\left({x}^{2}+1\right)}^{2}}=\frac{1}{x}+\frac{1}{\left({x}^{2}+1\right)}-\frac{x+2}{{\left({x}^{2}+1\right)}^{2}}

x(x

2

+1)

2

x

4

+x

3

+x

2

−x+1

=

x

1

+

(x

2

+1)

1

(x

2

+1)

2

x+2

TRY IT 4

Find the partial fraction decomposition of the expression with a repeated irreducible quadratic factor.

\displaystyle \frac{{x}^{3}-4{x}^{2}+9x - 5}{{\left({x}^{2}-2x+3\right)}^{2}}

(x

2

−2x+3)

2

x

3

−4x

2

+9x−5

Solution

LICENSES

Similar questions