Math, asked by Shilpa00, 3 months ago

Solve the given differential equation :

(2xy + x²) dy/dx = 3y² + 2xy

please help. ​

Answers

Answered by sarahssynergy
2

Solve Given equation 2xy \frac{dy}{dx} + x^{2}\frac{dy}{dx} -3y^{2} -2xy= 0

Step-by-step explanation:

  1. do substitution,        y(x)= x.u(x) \\                  -----(a)                                                                                              differentiating it we get,     \frac{dy}{dx} = x\frac{du}{dx} + u(x)              

    2. substituting this in the given differential equation we get,    

                         3x^{2} u^{2} - 2x^{2} u\frac{d(xu)}{dx} + 2x^{2} u-x^{2} \frac{d(xu)}{dx} =0\\x^{2} u^{2}+x^{2} u-2x^{3} u\frac{du}{dx} - x^{3} \frac{du}{dx}=0                                                                                                                                

                          \frac{du}{dx} = \frac{u(u+1)}{x(2u+1)}\\                         -----(i)

     3. above equation (i) is of the form , f_1(x).g_1(u).\frac{du}{dx} = f_2(x).g_2(u)\\                                  

         here,   f_1(x)= g_1(u)= 1 \\f_2(x)= -\frac1{x}\ and\ g_2(u)= -\frac{u(u+1)}{2u+1}        

     4. separating both variables x and u in equation (i)  and integrating     them we get,

                        \int\ \frac{2u+1}{u(u+1)} \, du= \int\frac1 {x} \, dx

      5. solving above integration we get,    log(u^2 + u) = log(x) + c

      6. solving for u(x) we get,   u(x)= (\frac{-\sqrt{c'+1} -1 }{2} ),(\frac{\sqrt{c'+1} -1 }{2})

      7. putting these values of u(x) in (a) we get our solution ,

                        y(x)= (x\frac{-\sqrt{c'+1} -1 }{2} ),(x\frac{\sqrt{c'+1} -1 }{2})            (here c' is a constant)

                                 

                             

                             

Similar questions