Math, asked by whitewolf2004, 11 months ago

Solve the given equation for x.
Pls help me with this question​
Pls answer urgently....

Attachments:

Answers

Answered by rishu6845
1

Answer:

\boxed{\huge{\pink{x = e^{2}}}}

Step-by-step explanation:

\bold{Given}\longrightarrow \\  {5}^{logx}  -  {4}^{logx - 1}  =  {4}^{logx}  +  {5}^{logx - 1}

\bold{To \: find}\longrightarrow \\ value \: of \: x

\bold{Concept \: used}\longrightarrow \\  \\ 1)  {a}^{m}  {b}^{m}  =  {(ab)}^{m}  \\ 2) log_{m}(x)  = n \\ =  > x =  {m}^{n}

\bold{Solution}\longrightarrow \\  {5}^{logx}  -  {4}^{logx - 1}  =  {4}^{logx}  +  {5}^{logx - 1}

 =  >  {5}^{logx}  -  {5}^{lox - 1}  =  {4}^{logx}  +  {4}^{logx - 1}  \\  =  >  {5}^{logx}  -  {5}^{logx}   \: {5}^{ - 1}  =  {4}^{logx}  +  {4}^{logx}   \: {4}^{ - 1}

 =  >  {5}^{logx} (1 -  {5}^{ - 1} ) =  {4}^{logx} (1 +  {4}^{ - 1} )

 =  >  {5}^{logx} (1 -  \dfrac{1}{5} ) =  {4}^{logx} (1 +  \dfrac{1}{4} )

 =  >  {5}^{logx} ( \dfrac{4}{5} ) =  {4}^{logx} ( \dfrac{5}{4} )

 =  >   \dfrac{ {5}^{logx} }{ {4}^{lox} }  =  \dfrac{25}{16}

 =  >  {( \dfrac{5}{4}) }^{logx}  =  {( \dfrac{5}{4} )}^{2}

 comparing \: exponent \: we \: get

 =  > logx \:  =  \: 2

 =  >  log_{e}(x)  = 2

 =  > x \:  =  {e}^{2}

Similar questions