Math, asked by Mister360, 3 months ago

Solve the given equations

5x+2y+2=0,3x+4y-10=0

\underline{\Large {\bf Some\:arrow\:commands:-}}

\boxed{\begin{array}{c|c}\boxed {\bf {command}} & \boxed  {\bf {output}} \\ \sf longmapsto &\longmapsto \\ \sf rightarrowtail &\rightarrowtail \\ \sf leadsto &\leadsto \\ \sf hookrightarrow &\hookrightarrow \\ \sf Rrightarrow &\Rrightarrow  \end {array}}

Note:-

use each command with "\"​

Answers

Answered by Anonymous
37

Answer:

Given :

\mapsto \sf 5x + 2y + 2 =\: 0

\mapsto \sf 3x + 4y - 10 =\: 0

To Find :-

  • What is the value of x and y.

Solution :-

Given equation :

 \leadsto \sf 5x + 2y =\: - 2\: -----\: (Equation\: No\: 1)\\

 \leadsto \sf 3x + 4y =\: 10\: -----\: (Equation\: No\: 2)\\

Now, from the equation no 1,

\sf 5x + 2y =\: -2

\sf 5x =\: - 2 - 2y

\sf\bold{\pink{x =\: \dfrac{- 2 - 2y}{5}}}

Now, by putting the value of x in the equation no 2 we get,

\sf 3\bigg(\dfrac{- 2 - 2y}{5}\bigg) + 4y =\: 10

\sf \dfrac{- 6 - 6y}{5} + 4y =\: 10

\sf - 6 - 6y + 20y =\: 5(10)

\sf - 6 + 14y =\: 50

\sf 14y =\: 50 + 6

\sf 14y =\: 56

\sf y =\: \dfrac{\cancel{56}}{\cancel{14}}

\sf\bold{\red{y =\: 4}}

Again, now by putting y = 4 in the equation no 1 we get,

\sf 5x + 2(4) =\: - 2

\sf 5x + 8 =\: - 2

\sf 5x =\: - 2 - 8

\sf 5x =\: - 10

\sf x =\: \dfrac{- \cancel{10}}{\cancel{5}}

\sf\bold{\red{x =\: - 2}}

\therefore The value of x is - 2 and the value of y is 4.

Answered by amankumaraman11
3

 \boxed{\begin{array}{c} \tt5x + 2y + 2 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \tt5x + 2y = \:  \green{  - 2}   \:  \:  \:  \:  \:  \rm \cdots(i)   \:  \:  \:  \:  \:  \:  {\Lleftarrow}  \{\times 3 \}\end {array}} \\  \boxed{\begin{array}{c} \tt3x + 4y  -  10 = 0 \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \\  \tt3x + 4y = \:  \green{ 10} \:  \:  \:  \:  \:  \rm \cdots(ii)  \:  \:  \:  \:  \:  \: {\Lleftarrow}  \{\times 5 \}\end {array}}

Equation (i) becomes

→ 15x + 6y = - 6 ----(a)

Equation (ii) becomes

→ 15x + 20y = 50 ----(b)

Subtracting Equation (a) from Equation (b), we get,

\begin{array}{c} \:  \:   \:  \:  \:  \:  \: \:  \:  \rm15x + 20y = 50   \\  {\tiny{ \sf{minus}}}\: \:  \:    \underline{\rm15x + 6y  \:   \:  =  \: - 6} \\  \tt \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 14y = 56 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \rightarrowtail \tt \dfrac{ \cancel{14}y}{\cancel{14}} =  \dfrac{56}{14}   \\  \\  \:  \:  \:  \:  \: \rightarrowtail \tt \:  \:  \: \:  \:  \:  y =  \red{4} \end {array}

From Equation (i),

 \rm{}x =  \frac{ - 2 - 2y}{5}  \\  \\ \tt x =  \frac{ - 2 - 2(4)}{5}  =  \frac{ - 2 - 8}{5}  \\  \\ \tt x =  \frac{ - 10}{5}  \:  \:  \:   \: = \red{  - 2}

Thus,

  • Value of x = -2
  • Value of y = 4
Similar questions