Math, asked by mradhika2, 2 months ago

Solve the given equations by cramer’s rule. 3x-y=5, x+3y=5

Answers

Answered by varadad25
3

Answer:

The solution of the given simultaneous equations is ( x, y ) = ( 1, 2 ).

Step-by-step-explanation:

The given simultaneous equations are

3x - y = 5 - - - ( 1 )

x + 3y = 5 - - - ( 2 )

Now, comparing equation ( 1 ) with ax + by = c, we get,

3x - y = 5 - - - ( 1 )

  • a₁ = 3
  • b₁ = - 1
  • c₁ = 5

Now, comparing equation ( 2 ) with ax + by = c, we get,

x + 3y = 5 - - - ( 2 )

  • a₂ = 1
  • b₂ = 3
  • c₂ = 5

Now, we know that,

D = \displaystyle{\bigg|\sf\:a_1    \:\:\: b_1 \:\bigg|}

\displaystyle{\:\:} \displaystyle{\quad\bigg|\sf\: a_2    \:\:\:b_2 \:\bigg|\quad}

⇒ D = \displaystyle{\bigg|\sf\:3 \:\:\:- 1 \:\bigg|}

\displaystyle{\qquad}\displaystyle{\quad\bigg|\sf\:1 \:\:\: 3 \:\bigg|\quad}

⇒ D = 3 * 3 - [ ( - 1 ) * 1 ]

⇒ D = 9 - ( - 1 )

⇒ D = 9 + 1

D = 10

Now, we know that,

Dₓ = \displaystyle{\bigg|\sf\: c_1\:\:\:   b_1\:\bigg|}

\displaystyle{\:\:} \displaystyle{\quad\bigg|\sf\:c_2 \:\:\:b_2\:\bigg|\quad}

⇒ Dₓ = \displaystyle{\bigg|\sf\:5  \:\:\:    - 1\:\bigg|}

\displaystyle{\qquad}\displaystyle{\quad\bigg|\sf\: 5  \:\:\: 3 \:\bigg|\quad}

⇒ Dₓ = 5 * 3 - [ ( - 1 ) * 5 ]

⇒ Dₓ = 15 - ( - 5 )

⇒ Dₓ = 15 + 5

Dₓ = 20

Now, we know that,

Dʸ = \displaystyle{\bigg|\sf\:a_1  \:\:\:c_1\:\bigg|}

\displaystyle{\:\:} \displaystyle{\quad\bigg|\sf\: a_2 \:\:\: c_2\:\bigg|\quad}

⇒ Dʸ = \displaystyle{\bigg|\sf\:3\:\:\:5\:\bigg|}

\displaystyle{\qquad} \displaystyle{\quad\bigg|\sf\:1   \:\:\: 5\:\bigg|\quad}

⇒ Dʸ = 3 * 5 - ( 5 * 1 )

⇒ Dʸ = 15 - 5

⇒ Dʸ = 10

Now, by Cramer's rule,

x = Dₓ / D

⇒ x = 20 / 10

x = 2

Now, by Cramer's rule,

y = Dʸ / D

⇒ y = 10 / 10

y = 1

∴ The solution of the given simultaneous equations is ( x, y ) = ( 1, 2 ).

Similar questions