Math, asked by Anonymous, 2 days ago

Solve the given expression.

\displaystyle\sum_{i=0}^\infty \sum_{j=0}^\infty \sum_{k=0}^\infty \frac{1}{3^i3^j3^k}

Given the condition that i ≠ j ≠ k.

Answer is 81/208 need solution.

Answers

Answered by YourHelperAdi
8

To Evaluate :

\displaystyle\sum_{i=0}^\infty \sum_{j=0}^\infty \sum_{k=0}^\infty \frac{1}{3^i3^j3^k}

Solution :

Case 1 : ijk

\displaystyle\sum_{i=0}^\infty \sum_{j=0}^\infty \sum_{k=0}^\infty \frac{1}{3^i3^j3^k}

 \implies\displaystyle\sum_{i=0}^\infty \sum_{j=0}^\infty   \left(\frac{1}{ {3}^{i}  \cdot {3}^{j} }  \right)\sum_{k=0}^\infty \frac{1}{3^k}

{ \implies\displaystyle\sum_{i=0}^\infty  \left(  \frac{1}{ {3}^{i} } \right)  \cdot \sum_{j=0}^\infty   \left(\frac{1}{ {3}^{j}   }  \right) \cdot\sum_{k=0}^\infty \frac{1}{3^k}}

\displaystyle \rm \implies  s_i  \cdot  s_j \cdot s_k

Now, first we will calculate the value of (Si)

 {\implies \displaystyle \rm s_i =  \frac{1}{ {3}^{0} }  + \frac{1}{3 {}^{1} }  +  \frac{1}{ {3}^{2} }  +  \frac{1}{ {3}^{3} } ... +  \frac{1}{ {3}^{ \infin} } }

Now, we can clearly see that a GP (geometric Progression) is formed.

So, The sum :

 {\implies \displaystyle \rm s_i =   \frac{a}{1 - r} }

 {\implies \displaystyle \rm s_i =   \frac{1}{1 -  \frac{1}{3} } }

 {\implies \displaystyle \rm s_i =   \frac{1}{ \frac{2}{3} } }

 {\implies \displaystyle \rm s_i =   \frac{3}{2} }

 \implies\displaystyle\sum_{i=0}^\infty \sum_{j=0}^\infty \sum_{k=0}^\infty \frac{1}{3^i3^j3^k} =  \frac{27}{8}

Let this Be S1

_____________________________________

Case 2 : i=j=k

 \implies\displaystyle\sum_{i=0}^\infty \sum_{j=0}^\infty \sum_{k=0}^\infty \frac{1}{3^i3^j3^k}

 \implies\displaystyle\sum_{i=0}^\infty \frac{1}{3^{3i}}

 \implies\displaystyle\sum_{i=0}^\infty \frac{1}{3^{3i}} =  \rm s_2

 \implies\displaystyle  \rm s_2 =  \frac{1}{ {3}^{0} }  +  \frac{1 }{ {3}^{3} }  +  \frac{1}{ {3}^{6} } ... +  \frac{1}{ {3}^{ \infin} }

 \implies\displaystyle  \rm s_2 =  \frac{1}{ 1 -  \frac{1}{3^{3} } }

 \implies\displaystyle  \rm s_2 =  \frac{27}{ 26}

 \implies\displaystyle\sum_{i=0}^\infty \sum_{j=0}^\infty \sum_{k=0}^\infty \frac{1}{3^i3^j3^k}  =  \frac{27}{26}

let this be S2

_____________________________________

Case 3 : i=jk

 \implies\displaystyle\sum_{i=0}^\infty \sum_{j=0}^\infty \sum_{k=0}^\infty \frac{1}{3^i3^j3^k}

 \implies\displaystyle\sum_{i=0}^\infty  \frac{1}{ {3}^{2i} }  \sum_{k=0}^\infty \frac{1}{3^k}

 \implies\displaystyle\sum_{i=0}^\infty  \frac{1}{ {3}^{2i} }   \left(  \frac{3}{2}   -  \frac{1}{ {3}^{i} } \right)

 \implies\displaystyle\sum_{i=0}^\infty  \frac{1}{ {3}^{2i} }    \cdot\frac{3}{2}   -  \frac{1}{ {3}^{3i} }

 \implies\displaystyle \frac{3}{2} \sum_{i=0}^\infty  \frac{1}{ {3}^{2i} }   - \sum_{i=0}^\infty \frac{1}{3^{3i}}

 \implies\displaystyle \frac{3}{2} \sum_{i=0}^\infty  \frac{1}{ {3}^{2i} }   - \sum_{i=0}^\infty \frac{1}{3^{3i}}

 \implies\displaystyle \frac{3}{2}  \cdot\frac{9}{  8}   -  \frac{27}{26}

 \implies\displaystyle \frac{3}{2}  \cdot\frac{9}{  8}   -  \frac{27}{26}

 \implies\displaystyle  \frac{135}{208}

Let this Be S3

______________________________________

So, the total sum will be :

S = S1-S2-3(S3)

(Because there can be 3 cases similar like S3)

 \implies  \displaystyle \rm s =  \frac{27}{8}   -   \frac{27}{26}  - 3 \cdot \frac{135}{208}

 \implies  \displaystyle \rm s =  \frac{81}{208}

So, the solution is 81/208

Similar questions