Math, asked by ankur25412, 1 year ago

solve the given integral.

Attachments:

Answers

Answered by Swarup1998
11
\underline{\textsf{Solution :}}

\textsf{Now,}\:\mathsf{\int e^{ax} cosbx\:dx}

=\mathsf{\tiny{e^{ax} \int cosbx\:dx-\int \{ \frac{d}{dx}(e^{ax})\int cosbx\:dx \}dx}}

=\mathsf{\frac{e^{ax}sinbx}{b}-\int \frac{a\:e^{ax}sinbx\:dx}{b}+k_{1}}

where \mathsf{k_{1}} is integral constant

=\mathsf{\frac{e^{ax}sinbx}{b}-\frac{a}{b}\int e^{ax}sinbx\:dx+k_{1}}

=\tiny{\mathsf{\frac{e^{ax}sinbx}{b}-\frac{a}{b}[e^{ax}\int sinbx\:dx-\int \{\frac{d}{dx}(e^{ax})\int sinbx\:dx\}dx]+k_{1}}}

=\tiny{\mathsf{\frac{e^{ax}sinbx}{b}-\frac{a}{b}[-\frac{e^{ax}cosbx}{b}+\int \frac{a\:e^{ax}cosbx\:dx}{b}]+k_{1}}}

=\tiny{\mathsf{\frac{e^{ax}sinbx}{b}+\frac{a}{b^{2}}e^{ax}cosbx-\frac{a^{2}}{b^{2}}\int e^{ax}cosbx\:dx+k_{1}}}

\to \tiny{\mathsf{(1+\frac{a^{2}}{b^{2}})\int e^{ax}cosbx\:dx=\frac{e^{ax}sinbx}{b}+\frac{a\:e^{ax}cosbx}{b^{2}}+k_{1}}}

\to \tiny{\mathsf{\frac{a^{2}+b^{2}}{b^{2}}\int e^{ax}cosbx\:dx=\frac{b\:e^{ax}sinbx+a\:e^{ax}cosbx}{b^{2}}+k_{1}}}

\to \tiny{\mathsf{\int e^{ax}cosbx\:dx=\frac{e^{ax}}{a^{2}+b^{2}}(b\:sinbx+a\:sinbx)+\frac{b^{2}k_{1}}{a^{2}+b^{2}}}}

\to \boxed{\tiny{\mathsf{\int e^{ax}cosbx\:dx = \frac{e^{ax}}{a^{2}+b^{2}}(a\:cosbx+b\:sinbx)+C}}}

\textsf{Here, cos2x cos4x}

=\mathsf{\frac{1}{2}\{cos(2x+4x)+cos(2x-4x)\}}

=\mathsf{\frac{1}{2}cos6x+\frac{1}{2}cos2x}

Thus, \mathsf{\int e^{-x}cos2x\:cos4x\:dx}

=\mathsf{\frac{1}{2} \int e^{-x}cos6x\:dx + \frac{1}{2} \int e^{-x}cos2x\:dx}

=\tiny{\mathsf{\frac{1}{2} \frac{e^{-x}}{(-1)^{2}+6^{2}}(-cos6x+6sin6x)+\frac{1}{2} \frac{e^{-x}}{(-1)^{2}+2^{2}}(-cos2x+2sin2x)+K}}

\textsf{where K is integral constant}

=\tiny{\mathsf{\frac{e^{-x}}{74}(-cos6x+6sin6x)+\frac{e^{-x}}{10}(-cos2x+2sin2x)+K}}

=\tiny{\mathsf{e^{-x}\{\frac{-cos6x+6sin6x}{74}+\frac{-cos2x+2sin2x}{10}\}+K}}

\textsf{This is the required integral.}
Similar questions