Math, asked by Anonymous, 24 days ago

Solve the given limit:

\displaystyle\lim_{n \to \infty} \sum_{k=0}^n \dfrac{1}{(2k+1)(2k+3)}

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{n \to \infty} \sum_{k=0}^n \dfrac{1}{(2k+1)(2k+3)} \\

can be rewritten as

\rm \: =  \: \dfrac{1}{2}  \displaystyle\lim_{n \to \infty} \sum_{k=0}^n \dfrac{2}{(2k+1)(2k+3)} \\

\rm \: =  \: \dfrac{1}{2}  \displaystyle\lim_{n \to \infty} \sum_{k=0}^n \dfrac{3 - 1}{(2k+1)(2k+3)} \\

\rm \: =  \: \dfrac{1}{2}  \displaystyle\lim_{n \to \infty} \sum_{k=0}^n \dfrac{2k + 3 - 2k - 1}{(2k+1)(2k+3)} \\

\rm \: =  \: \dfrac{1}{2}  \displaystyle\lim_{n \to \infty} \sum_{k=0}^n \dfrac{(2k + 3) - (2k + 1)}{(2k+1)(2k+3)} \\

\rm \: =  \: \dfrac{1}{2}  \displaystyle\lim_{n \to \infty} \sum_{k=0}^n \bigg(\dfrac{1}{2k + 1}  - \dfrac{1}{2k + 3} \bigg)  \\

\rm \: =  \: \dfrac{1}{2}  \displaystyle\lim_{n \to \infty} \bigg[ \bigg(\dfrac{1}{1}  - \dfrac{1}{3} \bigg) + \bigg(\dfrac{1}{3}  - \dfrac{1}{5} \bigg) + \bigg(\dfrac{1}{5}  - \dfrac{1}{7} \bigg) +  -  -  -  + \bigg(\dfrac{1}{2n + 1}  - \dfrac{1}{2n + 3} \bigg)  \\

\rm \: =  \: \dfrac{1}{2}  \displaystyle\lim_{n \to \infty} \bigg[ \bigg(1  - \dfrac{1}{2n + 3} \bigg)   \\

\rm \: =  \: \dfrac{1}{2}   \times (1 - 0)   \\

\rm \: =  \: \dfrac{1}{2} \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: \displaystyle\lim_{n \to \infty} \sum_{k=0}^n \dfrac{1}{(2k+1)(2k+3)} =  \frac{1}{2} \:  \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\displaystyle\lim_{x \to 0} \rm \:  \frac{sinx}{x}  \:  =  \: 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0} \rm \:  \frac{tanx}{x}  \:  =  \: 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0} \rm \:  \frac{log(1 + x)}{x}  \:  =  \: 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0} \rm \:  \frac{ {e}^{x}  - 1}{x}  \:  =  \: 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0} \rm \:  \frac{ {a}^{x}  - 1}{x}  \:  =  \: loga \: }} \\

Similar questions