Math, asked by Anonymous, 7 days ago

Solve the given limit.
\displaystyle\lim_{x\to 0}\dfrac{\ln\left[\dfrac{(1-3x)(1+x)^3}{(1+3x)(1-x)^3}\right]}{x^3}

Dont use L'Hôpital's rule.

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x\to 0}\dfrac{\ln\left[\dfrac{(1-3x)(1+x)^3}{(1+3x)(1-x)^3}\right]}{x^3} \\

We know,

\boxed{ \rm{ \:ln(xy) = ln(x) + ln(y) \: }} \\  \\ \boxed{ \rm{ \:ln \frac{x}{y} = ln(x) - ln(y) \:  \: }} \\  \\ \boxed{ \rm{ \:ln( {x}^{y}) \:  =  \: yln(x) \:  \: }} \\

So, using these results, we get

\rm \:  = \displaystyle\lim_{x\to 0} \frac{ln(1 - 3x) + 3ln(1 + x) - ln(1 + 3x) - 3ln(1 - x)}{ {x}^{3} }  \\

We know,

\rm \: ln(1 + x) = x - \dfrac{ {x}^{2} }{2}  + \dfrac{ {x}^{3} }{3}  - \dfrac{ {x}^{4} }{4}  +  -  -  -  \\

So,

\rm \: ln(1 -  x) =  - x - \dfrac{ {x}^{2} }{2}   - \dfrac{ {x}^{3} }{3}  - \dfrac{ {x}^{4} }{4}    -  -  -  \\

and

\rm \: ln(1 -  3x) =  - 3x - \dfrac{9{x}^{2} }{2}   - \dfrac{27{x}^{3} }{3}  - \dfrac{ 81{x}^{4} }{4}    -  -  -  \\

and

\rm \: ln(1 + 3x) = 3x - \dfrac{9{x}^{2} }{2} +  \dfrac{27{x}^{3} }{3}  - \dfrac{ 81{x}^{4} }{4} +  -  -  -  \\

So,

\rm \: ln(1 - 3x) - ln(1 + 3x) =  - 6x - 18 {x}^{3} -\frac{486 {x}^{5} }{5} +  -  -  -    \\

and

\rm \: ln(1 + x) - ln(1 - x) = 2x + \dfrac{2 {x}^{3} }{3}  +  \dfrac{ {2x}^{5} }{5} +  -  -  -  \\

So,

\rm \:3 ln(1 + x) - 3ln(1 - x) = 6x +  {2x}^{3}   +  \dfrac{ {6x}^{5} }{5} +  -  -  -  \\

So, it means

\rm \: ln(1 - 3x) - ln(1 + 3x) + 3ln(1 + x) - 3ln(1 - x) \\

\rm \:  =  \:  - 16 {x}^{3} -  \dfrac{480{x}^{5} }{5}  +  -  -  -  \\

\rm \:  =  \:  - 16 {x}^{3} -   {96x}^{5}   +  -  -  -  \\

On substituting this value in

\rm \:  = \displaystyle\lim_{x\to 0} \frac{ln(1 - 3x) + 3ln(1 + x) - ln(1 + 3x) - 3ln(1 - x)}{ {x}^{3} }  \\

we get

\rm \:  =  \: \displaystyle\lim_{x\to 0} \frac{ - 16 {x}^{3}  - 96 {x}^{5} -  -  -  -  }{ {x}^{3} }  \\

\rm \:  =  \: \displaystyle\lim_{x\to 0} \frac{ {x}^{3}[ - 16  - 96 {x}^{2} -  -  -  -  ]}{ {x}^{3} }  \\

\rm \:  =  \: \displaystyle\lim_{x\to 0}[ - 16 -  {96x}^{2} -  -  - ] \\

\rm \:  =  \:  -  \: 16 \\

Hence,

 \\ \rm\implies \:\boxed{ \rm{ \:\displaystyle\lim_{x\to 0}\dfrac{\ln\left[\dfrac{(1-3x)(1+x)^3}{(1+3x)(1-x)^3}\right]}{x^3}  \: =  \:  -  \: 16 \: }} \\  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ {e}^{x}  = 1 + x + \dfrac{ {x}^{2} }{2!} +  \dfrac{ {x}^{3} }{3!} +  -  -  -  }\\ \\ \bigstar \: \bf{ {e}^{ - x} = 1 - x + \dfrac{ {x}^{2} }{2!} - \dfrac{ {x}^{3} }{3!} +  -  -  - }\\ \\ \bigstar \: \bf{sinx = x - \dfrac{ {x}^{3} }{3!} + \dfrac{ {x}^{5} }{5!} +  -  -  - }\\ \\ \bigstar \: \bf{cosx = 1 - \dfrac{ {x}^{2} }{2!} + \dfrac{ {x}^{4} }{4!} +  -  -  - }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions