Math, asked by Anonymous, 1 month ago

Solve the given limit without using L'Hopital rule.

\rm\lim\limits_{x\to0}\dfrac{sin^2(\pi\cos^4x)}{x^4}


​​

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given expression is

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\sf \frac{ {sin}^{2}(\pi {cos}^{4}x )}{ {x}^{4} }}

If we substitute directly x = 0, we get

\red{\rm \:  =  \: \sf \dfrac{ {sin}^{2}(\pi {cos}^{4}0)}{ {0}^{4} }}

\red{\rm \:  =  \: \sf \dfrac{ {sin}^{2}(\pi )}{ 0}}

\red{\rm \:  =  \: \sf \dfrac{ 0}{ 0}}

which is indeterminant form.

Again, Consider

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\sf \frac{ {sin}^{2}(\pi {cos}^{4}x )}{ {x}^{4} }}

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf \frac{ {sin}^{2} (\pi {( {cos}^{2} x)}^{2} )}{ {x}^{4} }

We know,

\boxed{ \tt{ \:  {sin}^{2}x +  {cos}^{2}x = 1 \: }}

So, we get

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf \frac{ {sin}^{2} (\pi {( 1 - {sin}^{2} x)}^{2} )}{ {x}^{4} }

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf \frac{ {sin}^{2} (\pi {(1 +  {sin}^{4}x - 2 {sin}^{2}x}))}{ {x}^{4} }

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf \frac{ {sin}^{2} (\pi { +  \pi({sin}^{4}x - 2 {sin}^{2}x}))}{ {x}^{4} }

We know

\red{\rm :\longmapsto\:\boxed{ \tt{ \: sin(\pi + x) = -  sinx \: }}}

So, we get

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf \frac{ {sin}^{2} ({ \pi({sin}^{4}x - 2 {sin}^{2}x}))}{ {x}^{4} }

\boxed{ \tt{ \: \sf \: as \: x \:  \to \: 0 \: so, \:  {sin}^{4}x -  {2sin}^{2}x \:  \to \: 0}}

Thus,

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf \frac{ {sin}^{2} ({{( \pi({sin}^{4}x - 2 {sin}^{2}x}))}}{{ {(\pi({sin}^{4}x - 2 {sin}^{2}x})}) {}^{2} }  \times \dfrac{{({ \pi({sin}^{4}x - 2 {sin}^{2}x})}) {}^{2} }{ {x}^{4} }

We know

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{sinx}{x}  = 1 \: }}

So, using this, we get

\rm \:  =   \: 1 \times \: \displaystyle\lim_{x \to 0}\sf \dfrac{{({ \pi({sin}^{4}x - 2 {sin}^{2}x})}) {}^{2} }{ {x}^{4} }

\rm \:  =   \:  \displaystyle\lim_{x \to 0}\sf \dfrac{ {\pi}^{2}  {sin}^{4}x{{ ({sin}^{2}x - 2 }}) {}^{2} }{ {x}^{4} }

\rm \:  =  \:  {\pi}^{2}  \times \displaystyle\lim_{x \to 0}\sf \frac{ {sin}^{4} x}{ {x}^{4} } \times \displaystyle\lim_{x \to 0}\sf {( {sin}^{2}x - 2) }^{2}

We know,

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{sinx}{x}  = 1 \: }}

So, using this, we get

\rm \:  =  \:  {\pi}^{2}  \times 1 \times  {(0 - 2)}^{2}

\rm \:  =  \:  {4\pi}^{2}

Hence,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{ {sin}^{2}(\pi {cos}^{4}x )}{ {x}^{4} }} =  {4\pi}^{2}  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{sinx}{x}  = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{tanx}{x}  = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{log(1 + x)}{x}  = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{ {e}^{x}  - 1}{x}  = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{ {a}^{x}  - 1}{x}  = loga \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{ 1 - cosx}{x}  = 0 \: }}

Answered by ajr111
24

Answer:

4π²

Step-by-step explanation:

Given :

\mathrm{\lim \limits_{x \rightarrow 0} \dfrac{sin^2(\pi cos^4x)}{x^4}}

To find :

Evaluate the given limit

Solution :

First let us substitute 0 and check the result

\longmapsto \mathrm{\lim \limits_{x \rightarrow 0} \dfrac{sin^2(\pi cos^4x)}{x^4}}

\implies \mathrm{\dfrac{sin^2(\pi cos^4(0))}{0^4}}

\implies \mathrm{\dfrac{sin^2(\pi)}{0}}

\implies \mathrm{\dfrac{0}{0}}

Hence, it is in the 0/0 form which is indeterminate form

First let us find what is cos⁴x

\implies \mathrm{cos^4x}

We know that,

\boxed{\mathrm{sin^2x + cos^2x = 1}}

\implies \mathrm{(cos^2x)^2}

\implies \mathrm{(1 - sin^2x)^2}

\implies \mathrm{(1 - 2sin^2x + sin^4x)}

So, substituting in place of cos⁴x in the given equation,

\implies \mathrm{\lim \limits_{x \rightarrow 0} \dfrac{sin^2(\pi \mathrm{(1 - 2sin^2x + sin^4x)})}{x^4}}

\implies \mathrm{\lim \limits_{x \rightarrow 0} \dfrac{sin^2(\pi  + \pi \mathrm{(sin^4x - 2sin^2x)})}{x^4}}

We know that,

\boxed{\mathrm{sin(\pi + x) = -sinx }}

\implies \mathrm{\lim \limits_{x \rightarrow 0} \dfrac{\big(-sin(\pi \mathrm{(sin^4x - 2sin^2x)})\big)^2}{x^4}}

\implies \mathrm{\lim \limits_{x \rightarrow 0} \dfrac{sin^2(\pi \mathrm{(sin^4x - 2sin^2x)})}{x^4}}

Now, multiplying and dividing with \mathrm{\pi^2(sin^4x - 2sin^2x)^2} as there is numerator with power 2, we get,

\implies \mathrm{\lim \limits_{x \rightarrow 0} \dfrac{sin^2(\pi \mathrm{(sin^4x - 2sin^2x)})}{\mathrm{\pi^2(sin^4x - 2sin^2x)^2}} \times \dfrac{\mathrm{\pi^2(sin^4x - 2sin^2x)^2}}{x^4}}

We know that,

\boxed{\mathrm{\lim \limits _{x \rightarrow 0} \dfrac{sinx}{x} = 1}}

\boxed{\mathrm{(a -b)^2 = a^2 - 2ab + b^2 }}

So, applying this in above equation,

\implies \mathrm{\lim \limits_{x \rightarrow 0}  \dfrac{\mathrm{\pi^2(sin^8x - 4sin^6x + 4sin^4x)}}{x^4}}

Taking sin⁴x common,

\implies \mathrm{\lim \limits_{x \rightarrow 0} \dfrac{\pi^2\mathrm{sin^4x(sin^4x - 4sin^2x + 4)}}{x^4}}

\implies \mathrm{\lim \limits_{x \rightarrow 0} \pi^2 \times \dfrac{\mathrm{sin^4x}}{x^4} \times (sin^4x - 4sin^2x + 4)}

\implies \mathrm{ \pi ^2 \times 1 \times (sin0 - 4sin0 + 4)}

We know that,

\boxed{\mathrm {sin 0  = 0}}

\implies \mathrm{ \pi^2 \times (4)}

\implies \mathrm{ 4\pi^2}

\therefore \underline{\boxed{\mathbf{\lim \limits_{x \rightarrow 0} \dfrac{sin^2(\pi cos^4x)}{x^4} = 4\pi^2}}}

Hope it helps!!

Similar questions