Math, asked by Anonymous, 5 hours ago

Solve the given limits :-
  \rm \lim \limits_{x \to1} \left \{ \dfrac{(x + 1)^{4}-{2}^{4} }{(2x + 1)^{5} -  {3}^{5}  }  \right \}

Don't use binomial expansion, if possible try to solve using L'Hopital rule.​

Answers

Answered by a2zpccom
2

Answer:

16/405 will be the correct answer

Step-by-step explanation:

see steps in attachment

Attachments:
Answered by mathdude500
16

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\rm \lim \limits_{x \to1} \left \{ \dfrac{(x + 1)^{4}-{2}^{4} }{(2x + 1)^{5} - {3}^{5} } \right \}

If we put directly x = 1, we get

\rm \:  =  \:  \left \{ \dfrac{(1 + 1)^{4}-{2}^{4} }{(2 + 1)^{5} - {3}^{5} } \right \}

\rm \:  =  \:  \left \{ \dfrac{(2)^{4}-{2}^{4} }{(3)^{5} - {3}^{5} } \right \}

\rm \:  =  \: \dfrac{0}{0}  \: which \: is \: indeterminant

So, to evaluate the limit,

\rm \:  =  \: \rm \lim \limits_{x \to1} \left \{ \dfrac{(x + 1)^{4}-{2}^{4} }{(2x + 1)^{5} - {3}^{5} } \right \}

By using L - Hospital Rule,

\rm \:  =  \: \rm \lim \limits_{x \to1} \left \{ \dfrac{\dfrac{d}{dx} (x + 1)^{4}-\dfrac{d}{dx}{2}^{4} }{\dfrac{d}{dx}(2x + 1)^{5} - \dfrac{d}{dx}{3}^{5} } \right \}

We know that,

\red{ \boxed{ \sf{ \:\dfrac{d}{dx}k = 0}}}

and

\red{ \boxed{ \sf{ \:\dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1}}}}

So, using these Identities, we get

\rm \:  =  \: \rm \lim \limits_{x \to1} \left \{ \dfrac{4(x + 1)^{3}\dfrac{d}{dx}(x + 1)}{5(2x + 1)^{4}\dfrac{d}{dx}(2x + 1)} \right \}

\rm \:  =  \: \rm \lim \limits_{x \to1} \left \{ \dfrac{4(x + 1)^{3}(1 + 0)}{5(2x + 1)^{4}(2 + 0)} \right \}

\rm \:  =  \: \rm \lim \limits_{x \to1} \left \{ \dfrac{4(x + 1)^{3}}{10(2x + 1)^{4}} \right \}

\rm \:  =  \:\dfrac{2(1+ 1)^{3}}{5(2 + 1)^{4}}

\rm \:  =  \:\dfrac{2(2)^{3}}{5(3)^{4}}

\rm \:  =  \: \dfrac{2 \times 8}{5 \times 81}

\rm \:  =  \: \dfrac{16}{405}

Hence,

\bf\implies \:\red{ \boxed{ \sf{ \:\rm \lim \limits_{x \to1} \left \{ \dfrac{(x + 1)^{4}-{2}^{4} }{(2x + 1)^{5} - {3}^{5} } \right \} =  \frac{16}{405}}}}

Additional Information :-

 \blue{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions