Math, asked by roneei, 4 days ago

Solve the given problem in attachment .

Attachments:

Answers

Answered by Okhey
13

\huge{\underline{\underline{ \bf{⎆Question:-}}}}

\underline{ \boxed{ \sf{  ➥ To \:  \: differentiate \:  \: ➭ \:  {cos}^{ - 1 } ( \frac{2x}{1  +  {x}^{2} } )}}}

\huge{\underline{\underline{ \bf{☂Solution:-}}}}

\large\underline { {{\bold{\bold{Formula \: used-}}}}}

\small{\underbrace{{\color{purple}{ ⇝sin2θ \:  =  \:  \frac{2tanθ }{1 \:  +  \:  {tan}^{2} θ  } }}}}

\small{\underbrace{{\color{purple}{ ⇝ \frac{d(  {tan}^{ - 1}) }{dx} \:  =   \frac{1}{1 -  {x}^{2} }  }}}}

\green{ \small \underline{ \mathbb{\underline{ \:➱ Explanation : }}}}

≛ Let :

 \longmapsto \: y \:  =  {cos}^{ - 1} ( \frac{1}{1 +  {x}^{2} } )

≛ Put x = tanθ

 \large\longmapsto \: y \:  =  \:  \frac{2tanθ}{1 +   {tan}^{2}θ }

 \large\longmapsto \: y \:  =  \:  {cos}^{ - 1}  (sin2θ)

 \longmapsto \: y \:  =  \:  {cos}^{ - 1} (cos ( \frac{\pi}{2}  - 2 θ ))

 \longmapsto \: y \:  =   \frac{\pi}{2}  - 2 θ

∵  \: x   \: = \:  tanθ \\ ∴θ  =   {tan}^{ - 1}

☆Put \:  \: , \:  \: θ =  {tan}^{ - 1}

⇝y =  \large\frac{d (\frac{\pi}{2}  - 2  {tan}^{ - 1}x)}{dx}

⇝y =  \frac{\pi}{2}  - 2  {tan}^{ - 1}

⇝ \large\frac{dy}{dx}  =      - 2 \times (  \frac{1}{1 +  {x}^{2} }  )

Hence differentiation is :

\large{\underbrace{\overbrace{\color{red}{ ⛧  - 2 \times (  \frac{1}{1 +  {x}^{2} }  ) }}}}

Similar questions