Math, asked by shreyasi2350, 19 days ago

Solve the given problem.


Irrelevant answers will be reported.​

Attachments:

Answers

Answered by vikkiain
1

28.44 \: cm

Step-by-step explanation:

Given, \:  \:  \: hemishpere \:  \: of \:  \: radius \: (r) = 8 \: cm \:  \:  \: and  \\ right \:  \: circular \:  \: cone \:  \: of \:  \: bass \:  \: radius \: (r_{o} ) = 6 \: cm \\ Let, \:  \: heigth = h \\ A/Q, \:  \:  \boxed{volume \:  \: of \:  \: hemisphere = volume \:  \: of \:  \: cone} \\  \frac{2}{3}\pi {r}^{3}  =  \frac{1}{3} \pi {r_{o}}^{2}h \\ putting \:  \: values \\  \frac{2}{3}  \pi \times (8)^{3}  =  \frac{1}{3}\pi \times  ({6})^{2}  \times h \\ 2 \times  {8}^{3}  =  {6}^{2}  \times h \\ 2 \times 512 = 36 \times h \\ 1024 = 36h \\ h =  \frac{1024}{36}  \\ h = 28.44 \: cm

Similar questions