solve the given quadratic equation 2x²-6x+3=0
Answers
EXPLANATION.
Quadratic equation.
⇒ 2x² - 6x + 3 = 0.
As we know that,
⇒ D = Discriminant Or b² - 4ac.
⇒ D = (-6)² - 4(2)(3).
⇒ D = 36 - 24.
⇒ D = 12.
As we know that,
⇒ α = -b + √D/2a.
⇒ β = -b - √D/2a.
⇒ α = -(-6) + √12/2(2).
⇒ α = 6 + √12/4.
⇒ α = 6 + 2√3/4.
⇒ α = 2(3 + √3)/4.
⇒ α = (3 + √3)/2.
⇒ β = -(-6) - √12/4.
⇒ β = 6 - √12/4.
⇒ β = 2(3 - √3)/4.
⇒ β = (3 - √3)/2.
MORE INFORMATION.
Conjugate roots.
If D < 0.
One roots = α + iβ.
Other roots = α - iβ.
If D > 0.
One roots = α + √β.
Other roots = α - √β.
x = 3+√3/2 or 3-√3/2
Step-by-step explanation:
2x²-6x+3=0
Now, We are going to solve the given quadratic equation using quadratic formula method.
2x²-6x+3=0
Here,
=> b = -6
=> a = 2
=> c = 3
Quadratic Formula:
x => -b+√D/2a or -b-√D/2a
D = Discriminant = b²-4ac
For the following equation, the discriminant is:
=> D = (-6)²-4×2×3
=> D = 36-24
=> D = 12
Hence, on applying the formula, we get:
x => -b+√D/2a or -b-√D/2a
x => 6+√12/4 or 6-√12/4
x => 2(3+√3)/4 or 2(3-√3)/4
x => 3+√3/2 or 3-√3/2
Hence, Solved!