Solve the given quadratic equation by factorization :
, x ≠ 0 , 2
Answers
Step-by-step explanation:
1/x - 1/x-2 = 3
1(x-2)-1x / x(x-2)=3
x-2-x/x²-2x=3
-2=3x²-6x
3x²-6x+2 =0
Using the quadratic formula we can solve for x
-b±√(b2-4ac)
--------------
2a
6±√[62-4(3)(2)]
-------------------
2(3)
6±√(36-24)
-------------
6
6±√12
-------
6
3±√3
------
3
Answer:
Required value of x is either ( 3 + √3 ) / 3 or ( 3 - √3 ) / 3 .
Step-by-step explanation:
= > 1 / x - 1 / ( x - 2 ) = 3
= > [ ( x - 2 ) - x ] / x( x - 2 ) = 3
= > [ x - 2 - x ] / ( x^2 - 2x ) = 3
= > - 2 = 3( x^2 - 2x )
= > 3x^2 - 6x + 2 = 0
= > 3x^2 - 6x - √3 + √3 + 2 = 0 { Add and subtract √3 }
= > 3x^2 + ( - 3 + √3 - 3 - √3 )x - √3 + √3 + ( 3 - 1 ) = 0 { - 6 = - 3 - 3 or - 3 + √3 - 3 - √3 and 2 = 3 - 1 }
= > 3x^2 - 3x + √3 x - 3x - √3 x - √3 + √3 + 3 - 1 = 0
= > 3x^2 - 3x + √3 x - 3x + 3 - √3 - √3 x + √3 - 1 = 0
= > √3 x( √3 x - √3 + 1 ) - √3 ( √3 x - √3 + 1 ) - ( √ 3 x - √3 + 1 ) = 0
= > ( √3 x - √3 x + 1 )( √3 x - √3 - 1 ) = 0
= > [ √3( √3 x - √3 - 1 ) ][ √3( √3 x - √3 + 1 ) ] = 0 { multiplied by 3 or √3 x √3 }
= > ( 3x - 3 - √3 )( 3x - 3 + √3 ) = 0
= > 3x = 3 + √3 Or 3x = 3 - √3
= > x = ( 3 + √3 ) / 3 Or x = ( 3 - √3 ) / 3
Thus,
Required value of x is either ( 3 + √3 ) / 3 or ( 3 - √3 ) / 3 .