Math, asked by bhanulokanadham, 4 months ago

solve the given quadratic equation x^2-3(x+3)=0 giving your answer correct to two decimal places​

Answers

Answered by amansharma264
8

EXPLANATION.

Quadratic equation,

⇒ x² - 3(x + 3) = 0.

As we know that,

⇒ x² - 3x - 9 = 0.

D = discriminant

⇒ D = b² - 4ac.

Put the values in equation, we get.

⇒ D = (-3)² - 4(1)(-9).

⇒ D = 9 + 36.

⇒ D = 45.

⇒ x = -b ±√D/2a.

⇒ x = -b + √D/2a  and  x = -b - √D/2a.

⇒ x = -(-3) + √45/2.

⇒ x = 3 + √45/2.

⇒ x = 3 + 3√5/2.

⇒ x = 3(1 + √5)/2.

⇒ x = -(-3) - √45/2.

⇒ x = 3 - 3√5/2.

⇒ x = 3(1 - √5)/2.

Answered by mathdude500
5

\large\underline\purple{\bold{Solution :-  }}

\tt \ \: :  ⟼  {x}^{2}  - 3(x + 3) = 0

\tt \ \: :  ⟼  {x}^{2}  - 3x - 9 = 0

\tt \:  ⟼ On \: comparing \: with \:  {ax}^{2}  + bx + c = 0 \: we \: get

\tt \ \: :  ⟼ a \:  = 1  \: \\ \tt \ \: :  ⟼ b =  - 3 \\ \tt \ \: :  ⟼ c \:  =  - 9

\tt \ \: :  ⟼ Now, \:discriminant \:  d \:  =  {b}^{2}  - 4ac

\tt \ \: :  ⟼ \:d \:   =  {( - 3)}^{2}  - 4 \times 1 \times ( - 9)

\tt \ \: :  ⟼ d = 9 + 36

\tt\implies \:d \:  =  \: 45

☆ Solution of quadratic equation is given by

\tt \ \: :  ⟼ x = \dfrac{ - b \:  \pm \:  \sqrt{d} }{2a}

\tt \ \: :  ⟼ x \:  = \dfrac{ - ( - 3) \:  \pm \:  \sqrt{45} }{2 \times 1}

\tt \ \: :  ⟼ x = \dfrac{3 \:  \pm \: 3 \sqrt{5} }{2}

\tt \:  ⟼ x = \dfrac{3 \:  \pm \: 3 \times 2 .236}{2}

\tt \ \: :  ⟼ x = \dfrac{3 \:  \pm \: 6.708}{2}

\tt \ \: :  ⟼ x = \dfrac{3 + 6.708}{2} \: or \:  \dfrac{3 - 6.708}{2}

\tt \ \: :  ⟼ x = \dfrac{9.708}{2}  \: or \: \dfrac{ - 3.708}{2}

\tt \ \: :  ⟼ x = 4.85 \: or \:  - 1.85

Similar questions