solve the given question
Answers
Answer:
HOPE IT HELPS YOU !!!
Step-by-step explanation:
ANS 18 :
sin(A-B) = 1/2
=> sin(A-B) = sin(30)
=> A-B = 30 ------------------(1)
cos(A+B) =1/2
=>cos(A+B) = cos(60)
=>A+B = 60 -------------------(2)
Adding (1) and (2) we get,
A-B + A+B = 30+60
=>2A = 90
Therefore A=45 degrees
On putting value of A in equation(2) we get,
45+B=60
Therefore B = 60-45 = 15 degrees
ANS 19:
sin(A+B)=1
=> sin(A+B) = sin(90)
=> A+B = 90 ----------------(1)
cos(A-B)=1
=> cos(A-B) = cos(0)
=>A-B = 0 -------------------(2)
Adding (1) and (2) we get,
A+B + A-B = 90+0
=>2A=90
Therefore A=45 degrees
On putting value of A=45 in equation(1) we get,
45+B=90
=>B=90-45
Therefore B=45 degrees
ANS 20:
tan(A-B) = 1/root(3)
=>tan(A-B) = tan(30)
=> A-B = 30 ----------------(1)
tan(A+B) = root(3)
=>tan(A+B) = tan(60)
=>A+B = 60 ----------------(2)
Adding (1) and (2) we get,
A-B + A+B = 30+60
=>2A=90
Therefore A=45 degrees
putting A=45 in equation (2), we get,
45+B = 60
Therefore B=15 degrees
ANS 21:
cos(A-B) = root(3)/2
=> cos(A-B) = cos(30)
=> A-B = 30 ---------------(1)
sin(A+B) = 1
=>sin(A+B) = sin(90)
=>A+B = 90 ---------------(2)
Adding (1) and (2) we get,
A-B + A+B = 30+90
=> 2A = 120
Therefore A=60 degrees
On putting A=60 in equation (2) we get,
60 + B =90
Therefore B=30 degrees.
Answer:
(18) sin(A-B) = 1/2
=> sin(A-B) = sin(30°)
=> A-B = 30° ------------------(1)
cos(A+B) =1/2
=>cos(A+B) = cos(60°)
=>A+B = 60° -------------------(2)
On adding (1) and (2) we get,
A-B + A+B = 30°+60°
=>2A = 90°
So A=45°
On putting value of A in equation(2) we get,
45+B=60°
Therefore B = 60°-45° = 15°
19) sin(A+B)=1
=> sin(A+B) = sin(90°)
=> A+B = 90° ----------------(1)
cos(A-B)=1
=> cos(A-B) = cos(0°)
=>A-B = 0° -------------------(2)
On adding (1) and (2) we get,
A+B + A-B = 90°+0°
=>2A=90°
Therefore A=45°
On putting value of A=45° in equation(1) we get,
45+B=90°
=>B=90°-45°
Therefore B=45°
(20) tan(A-B) = 1/root(3)
=>tan(A-B) = tan(30°)
=> A-B = 30° ----------------(1)
tan(A+B) = √3
=>tan(A+B) = tan(60°)
=>A+B = 60° ----------------(2)
Adding (1) and (2) we get,
A-B + A+B = 30°+60°
=>2A=90°
Therefore A=45°
putting A=45° in equation (2), we get,
45°+B = 60°
Therefore B=15°
Step-by-step explanation:
(21) cos(A-B) = √3/2
=> cos(A-B) = cos(30°)
=> A-B = 30° ---------------(1)
sin(A+B) = 1
=>sin(A+B) = sin(90°)
=>A+B = 90° ---------------(2)
On adding (1) and (2) we get,
A-B + A+B = 30°+90°
=> 2A = 120°
Therefore A=60°
On putting A=60° in equation (2) we get,
60° + B =90°
Therefore B=30°