Math, asked by anaytripathi27, 11 hours ago

solve the given question
#anayuso

AB = 16CM DE=15CM  \sin( \alpha  =  \frac{3}{5} )  \sin( \beta  =  \frac{4}{5} )  \\ find \: length \: of \: bd
WRONG ABSWERS WILL BE REPORTED​

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

To \:  find = length \: of \: BD \\  Given =  \\ AB = 16.cm \\ DE = 15.cm \\  \alpha  =  \frac{3}{5} \\  \\  \beta  =  \frac{4}{5}   \\ \\ so \: firstly \: using \\ tan \: ACB =  \frac{AC}{CB} \\  \\ ie \: tan \:  \beta  =  \frac{AC}{CB}  \\  \\  \frac{4}{5}  =  \frac{16}{CB}  \\  \\  \frac{1}{5}  =  \frac{4}{CB}  \\  \\ CB = 5 \times 4 \\ ie \: CB = 20.cm

now \: using \\ tan \: ECD =  \frac{ED}{CD}  \\  \\ ie \: tan \:  \alpha  =  \frac{CD}{CD}  \\  \\  \frac{3}{5}  =  \frac{15}{CD}  \\  \\  \frac{1}{5}  =  \frac{5}{CD}  \\  \\ CD = 5 \times 5 \\ ie \: CD = 25.cm

now \: thus \: then \\ BD=BC+CD \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( \: B - C - D \: ) \\  = 20 + 25 \\  = 45.cm \\  \\ hence \: BD=45.cm

Similar questions