Math, asked by 2003Sakshi, 10 months ago

Solve the given question ↑↑
Chapter - Differentiation
Class - 11 th
Thanks ^_^ ​

Attachments:

Answers

Answered by pulakmath007
36

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1.

 \displaystyle \: \frac{d}{dx} ( {x}^{n} ) = n \: {x}^{n - 1}

2. \displaystyle \: \frac{d}{dx} ( logx)= \frac{1}{x}

3. \displaystyle \: \frac{d}{dx} (uv \: ) =u \frac{dv}{dx} + v\frac{du}{dx}

TO EVALUATE

Differentiate : y = {x}^{2} \sqrt{x} + {x}^{4} \: logx

EVALUATION

Let u \: = {x}^{2} \sqrt{x} \: \: and \: \: v = {x}^{4} \: logx

 \implies \: \displaystyle \: \frac{dv}{dx} = 4 {x}^{3} \: logx + {x}^{3}

So y = u + v

Differentiating both sides with respect to x

 \displaystyle \: \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}

Now

 \displaystyle \: u \: = {x}^{2} \sqrt{x} = {x}^{(2 + \frac{1}{2} \: ) } = {x}^{ \frac{5}{2} }

Differentiating both sides with respect to x we get

 \displaystyle \: \frac{du}{dx} = \frac{5}{2} {x}^{( \frac{5}{2} - 1)} = \frac{5}{2} {x}^{ \frac{3}{2} }

Again v = {x}^{4} \: logx

Differentiating both sides with respect to x we get

 \displaystyle \: \frac{dv}{dx} = 4 {x}^{3} \: logx + {x}^{4} \times \frac{1}{x}

RESULT

 \displaystyle \:  \frac{dy}{dx}  =  \frac{5}{2}  {x}^{ \frac{3}{2} }  + 4 {x}^{3}  \: logx \:  +  {x}^{3}

Answered by Anonymous
3

I hope you know Implicit Differentiation.[Math Processing Error]

y=(x+2)(x−1)(x+3)(1)

Taking logarithms,

lny=ln(x+2)+ln(x−1)+ln(x+3)

Differentiating w.r.t x,

1y\dy\dx=1x+2+1x−1+1x+3

\dy\dx=y(1x+2+1x−1+1x+3)

From (1):

\dy\dx=(x−1)(x+3)+(x+2)(x+3)+(x+2)(x−1)

\dy\dx=(x−1)(x+3)+(x+2)(x+3+x−1)

\dy\dx=(x2+2x−3)+(2x2+6x+4)

\dy\dx=3x2+8x+1

Similar questions