Math, asked by jokermath, 8 months ago

Solve the given question. Note : ! is 1 actually

Attachments:

Answers

Answered by saounksh
1

ᴀɴsᴡᴇʀ

  • The function is discontinuous at x = 1.

ᴇxᴘʟᴀɪɴᴀᴛɪᴏɴ

Here,

 f(x) = \frac{[x^2] - 1} {x^2 - 1} \:\:if \:\:x^2 ≠ 1

\:\:\:\:\:\:\:\:\:\:= 0\:\:\:\:\:\:\:\:\:\:if\:\:x^2 = 1

Now, at x = 1,

Left Hand Limit

LHL  = \lim \limits_{x\to 1^-}f(x)

\:\:\:\:\:\:\:\:\:\: = \lim \limits_{x\to 1^-}\frac{[x^2] - 1} {x^2 - 1}

Since  0 < x^2 < 1, [x^2] = 0

\:\:\:\:\:\:\:\:\:\:= \lim \limits_{x\to 1^-}\frac{0 - 1} {x^2 - 1}

\:\:\:\:\:\:\:\:\:\: = \lim \limits_{x\to 1^-}\frac{ - 1} {x^2 - 1}

This limit tends to  +\infty and hence, the left hand limit does not exist. Just from this information, we can conclude that \lim \limits_{x\to 1}f(x) does not exist and hence the function is discontinuous at x = 1.

Just for curiosity let us calculate the right hand limit.

Right Hand Limit

RHL  = \lim \limits_{x\to 1^+}f(x)

\:\:\:\:\:\:\:\:\:\: = \lim \limits_{x\to 1^+}\frac{[x^2] - 1}{x^2 - 1}

Since  1 < x^2 < 2, [x^2] = 1

\:\:\:\:\:\:\:\:\:\: = \lim \limits_{x\to 1^+}\frac{1 - 1} {x^2 - 1}

\:\:\:\:\:\:\:\:\:\: = \lim \limits_{x\to 1^+}\frac{0} {x^2 - 1}

\:\:\:\:\:\:\:\:\:\: = 0

While the numerator is exactly '0', denominator is a number close to '0' but not exactly '0'. Dividing '0' by a non zero number is '0'.

Similar questions